## Existence and regularity of minima for integral functionals noncoercive in the energy space.(English)Zbl 1015.49014

From the introduction: “We are interested in the existence and regularity of minima for functionals whose model is $J(v)= \int_\Omega {|\nabla v|^p\over(1+|v|)^{\alpha p}} dx- \int_\Omega f v dx,\qquad v\in W^{1,p}_0(\Omega),$ where $$\Omega$$ is a bounded, open subset of $$\mathbb{R}^N$$, $$\alpha> 0$$, $$p> 1$$, and $$f$$ belongs to $$L^r(\Omega)$$ for some $$r\geq 1$$.
This functional, which is clearly well defined thanks to Sobolev embedding if $$r\geq (p^*)'$$, is however non-coercive on $$W^{1,p}_0(\Omega)$$: there exists a function $$f$$, and a sequence $$\{u_n\}$$ whose norm diverges in $$W^{1,p}_0(\Omega)$$, such that $$J(u_n)$$ tends to $$-\infty$$.
Thus, even if $$J$$ is lower-semicontinuous on $$W^{1,p}_0(\Omega)$$ as a consequence of the De Giorgi theorem, the lack of coerciveness implies that $$J$$ may not attain its minimum on $$W^{1,p}_0(\Omega)$$ even in the case in which $$J$$ is bounded from below.
The structure of the functional has however enough properties in order to prove that if $$f$$ belongs to $$L^r(\Omega)$$, with $$r\geq [p^*(1- \alpha)]'$$, then $$J$$ (suitably extended) is coercive on $$W^{1,q}_0(\Omega)$$ for some $$q< p$$ depending on $$\alpha$$. Thus, $$J$$ attains its minimum on this larger space. Our aim is to prove some regularity results for these minima, depending on the summability of $$f$$.
More precisely, we prove that if $$f$$ is regular enough, then any minimum is bounded, so that (as a consequence of the structure of the functional) it belongs to $$W^{1,p}_0(\Omega)$$. If we “decrease” the summability of $$f$$, then the minima are no longer bounded, but they still belong to the “energy space” $$W^{1,p}_0(\Omega)$$. Finally, there is a range of summability for $$f$$ such that the minima are neither bounded, nor in $$W^{1,p}_0(\Omega)$$.
We also prove some results concerning the regularity of the minima if the datum $$f$$ belongs to Marcinkiewicz spaces, and a result of existence of solutions for a nonlinear elliptic equation whose model is the Euler equation of the functional $$J$$”.

### MSC:

 49J45 Methods involving semicontinuity and convergence; relaxation 49N60 Regularity of solutions in optimal control 49J10 Existence theories for free problems in two or more independent variables 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text:

### References:

 [1] A. Ambrosetti - H. Brezis - G. Cerami , Combined effects of concave and convex nonlinearities in some elliptic problems , J. Funct. Anal. 122 ( 1994 ), 519 - 543 . MR 1276168 | Zbl 0805.35028 · Zbl 0805.35028 · doi:10.1006/jfan.1994.1078 [2] P. Benilan - L. Boccardo - T. Gallouet - R. Gariepy - M. Pierre - J.L. Vazquez , An L 1 theory of existence and uniqueness of nonlinear elliptic equations , Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 ( 1995 ), 240 - 273 . Numdam | MR 1354907 | Zbl 0866.35037 · Zbl 0866.35037 [3] A. Bensoussan - L. Boccardo - F. Murat , On a nonlinear partial differential equation having natural growth terms and unbounded solution , Ann. Inst. H. Poincaré Anal. Non Linéaire 5 ( 1988 ), 347 - 364 . Numdam | MR 963104 | Zbl 0696.35042 · Zbl 0696.35042 [4] L. Boccardo - F. Murat - J.-P. Puel , Existence of bounded solutions for nonlinear elliptic unilateral problems , Ann. Mat. Pura Appl. 152 ( 1988 ), 183 - 196 . MR 980979 | Zbl 0687.35042 · Zbl 0687.35042 · doi:10.1007/BF01766148 [5] L. Boccardo - F. Murat - J.-P. Puel , L\infty estimate for some nonlinear elliptic partial differential equations and application to an existence result , SIAM J. Math. Anal. 23 ( 1992 ), 326 - 333 . Zbl 0785.35033 · Zbl 0785.35033 · doi:10.1137/0523016 [6] L. Boccardo - A. Dall’aglio - L. Orsina , Existence and Regularity Results for some Elliptic Equations with Degenerate Coercivity , special issue in honor of Calogero Vinti, Atti Sem. Mat. Fis. Univ. Modena , to appear. MR 1645710 | Zbl 0911.35049 · Zbl 0911.35049 [7] L. Boccardo - D. Giachetti , Ls regularity of solutions of some nonlinear elliptic problems , preprint. · Zbl 0803.35046 [8] L. Boccardo - L. Orsina , Semilinear elliptic equations in Ls , Houston J. Math. 20 ( 1994 ), 99 - 114 . Zbl 0803.35047 · Zbl 0803.35047 [9] B. Dacorogna , ”Direct methods in the calculus of variations” , Applied Mathematical Sciences 78 , Springer-Verlag , Berlin - New York , 1989 . MR 990890 | Zbl 0703.49001 · Zbl 0703.49001 [10] E. De Giorgi , ” Teoremi di Semicontinuità nel Calcolo delle Variazioni ”, Lecture notes , Istituto Nazionale di Alta Matematica , Roma , 1968 . [11] E. De Giorgi , Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari , Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. 3 ( 1957 ), 25 - 43 . MR 93649 | Zbl 0084.31901 · Zbl 0084.31901 [12] M. Giaquinta , ” Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems ”, Annals of Mathematics Studies 105 , Princeton University Press , Princeton, NJ , 1983 . MR 717034 | Zbl 0516.49003 · Zbl 0516.49003 [13] M. Giaquinta - E. Giusti , On the regularity of the minima of variational integrals , Acta Math. 148 ( 1982 ), 31 - 46 . MR 666107 | Zbl 0494.49031 · Zbl 0494.49031 · doi:10.1007/BF02392725 [14] O Ladyženskaya - N. Ural’ceva , ” Linear and Quasilinear Elliptic Equations ”, Academic Press , New York , 1968 . MR 244627 | Zbl 0164.13002 · Zbl 0164.13002 [15] J. Leray - J.-L. Lions , Quelques résultats de Višik sur les problèmes elliptiques semi-linéaires par les méthodes de Minty et Browder , Bull. Soc. Math. France 93 ( 1965 ), 97 - 107 . Numdam | MR 194733 | Zbl 0132.10502 · Zbl 0132.10502 [16] A. Porretta , Uniqueness and Homogenization for a Class of Noncoercive Operators in Divergence form , Special Issue in Honor of Calogero Vinti, Atti Sem. Mat. Fis. Univ. Modena , to appear. MR 1645762 | Zbl 0914.35049 · Zbl 0914.35049 [17] G. Stampacchia , Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus , Ann. Inst. Fourier ( Grenoble ) 15 ( 1965 ), 189 - 258 . Numdam | MR 192177 | Zbl 0151.15401 · Zbl 0151.15401 · doi:10.5802/aif.204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.