Random walks with strongly inhomogeneous rates and singular diffusions: Convergence, localization and aging in one dimension. (English) Zbl 1015.60099

The paper extends the previous work [Probab. Theory Relat. Fields 115, No. 3, 417-443 (1999; Zbl 0954.60094)] on chaotic time dependence in a disordered spin system. Technically that refers to the study of localization in the one-dimensional random walk with random rates. The main result is a general convergence criterion for localizaton and aging functionals of diffusions and walks with nonrandom speed measures. The localization is related to the concept of aging, typical for out of equilibrium phenomena in spin-glasses.


60K37 Processes in random environments
60G18 Self-similar stochastic processes
82C44 Dynamics of disordered systems (random Ising systems, etc.) in time-dependent statistical mechanics


Zbl 0954.60094
Full Text: DOI arXiv


[1] FONTES, L. R., ISOPI, M. and NEWMAN, C. M. (1999). Chaotic time dependence in a disordered spin system. Probab. Theory Related Fields 115 417-443. · Zbl 0954.60094
[2] BOUCHAUD, J.-P., CUGLIANDOLO, L., KURCHAN, J. and MÉZARD, M. (1998). Out of equilibrium dynamics in spin-glasses and other glassy systems. In Spin-glasses and Random Fields (A. P. Young, ed.). World Scientific, Singapore.
[3] STONE, C. (1963). Limit theorems for random walks, birth and death processes, and diffusion processes. Illinois J. Math. 7 638-660. · Zbl 0118.13202
[4] HAVLIN, S. and BEN-AVRAHAM, D. (1987). Diffusion in disordered media. Adv. Phys. 36 695-798.
[5] ISICHENKO, M. B. (1992). Percolation, statistical topography and transport in random media. Rev. Modern Phys. 64 961-1043.
[6] SINAI, YA. G. (1982). The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab. Appl. 27 256-268. · Zbl 0505.60086
[7] SOLOMON, F. (1975). Random walks in a random environment. Ann. Probab. 3 1-31. · Zbl 0305.60029
[8] GOLOSOV, A. O. (1984). Localization of random walks in one-dimensional random environments. Comm. Math. Phys. 92 491-506. · Zbl 0534.60065
[9] LE DOUSSAL, P., MONTHUS, C. and FISHER, D. S. (1999). Random walks in onedimensional random environments: exact renormalization group analysis. Phys. Rev. E 59 1795-1810.
[10] DEMBO, A., GUIONNET, A. and ZEITOUNI, O. (2001). Aging properties of Sinai’s model of random walk in random environment. Available at arXiv.org/pdf/math.PR/0105215.
[11] KAWAZU, K. and KESTEN, H. (1984). On birth and death processes in symmetric random environment. J. Statist. Phys. 37 561-576. · Zbl 0587.60088
[12] SCHUMACHER, S. (1984). Diffusions with random coefficients. Ph.D. dissertation, Univ. California, Los Angeles. · Zbl 0572.60053
[13] SCHUMACHER, S. (1985). Diffusions with random coefficients. In Particle Systems, Random Media and Large Deviations (R. Durrett, ed.) 351-356. Amer. Math. Soc., Providence, RI. · Zbl 0572.60053
[14] BEN AROUS, G., DEMBO, A. and GUIONNET, A. (2001). Aging of spherical spin glasses. Probab. Theory Related Fields 120 1-67. · Zbl 0993.60055
[15] NEWMAN, C. M. and STEIN, D. L. (1999). Equilibrium pure states and nonequilibrium chaos. J. Statist. Phys. 94 709-722. · Zbl 0958.82046
[16] NANDA, S., NEWMAN, C. M. and STEIN, D. L. (2000). Dynamics of Ising spin systems at zero temperature. In On Dobrushin’s Way. From Probability Theory to Statistical Physics (R. Minlos, S. Shlosman and Y. Suhov, eds.) 183-194. Amer. Math. Soc., Providence, RI. · Zbl 0968.60097
[17] ITÔ, K. and MCKEAN, H. P. (1965). Diffusion Processes and Their Sample Paths. Springer, New York. · Zbl 0127.09503
[18] RINN, B., MAASS, P. and BOUCHAUD, J.-P. (2000). Multiple scaling regimes in simple aging models. Phys. Rev. Lett. 84 5403-5406.
[19] KIPNIS, C. and VARADHAN, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 1-19. · Zbl 0588.60058
[20] FELLER, W. (1966). An Introduction to Probability Theory and Its Applications II. Wiley, New York. · Zbl 0138.10207
[21] KÜCHLER, U. (1980). Some asymptotic properties of the transition densities of onedimensional quasidiffusions. Publ. Res. Inst. Math. Sci. 16 245-268. · Zbl 0443.60077
[22] KNIGHT, F. B. (1981). Characterization of the Levy measures of inverse local times of gap diffusion. Progr. Probab. Statist. 1 53-78. · Zbl 0518.60083
[23] KOTANI, S. and WATANABE, S. (1982). Kre in’s spectral theory of strings and generalized diffusion processes. Lecture Notes in Math. 923 235-259. Springer, New York. · Zbl 0496.60080
[24] RESNICK, S. I. (1987). Extreme Values, Regular Variation, and Point Processes. Springer, New York. · Zbl 0633.60001
[25] SAMORODNITSKY, G. and TAQQU, M. S. (1994). Stable Non-Gaussian Random Processes. Chapman and Hall, New York. · Zbl 0925.60027
[26] SATO, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press. · Zbl 0973.60001
[27] NEW YORK, NEW YORK 10012 E-MAIL: newman@cims.nyu.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.