Estimation in a growth curve model with singular covariance. (English) Zbl 1015.62056

Summary: Let \(Y\) be a multivariate normal random matrix with covariance \(A\otimes\Sigma\) and mean \(\mu\in S_1S_2'\), where \(S_i=\{X_i b_i: K_i'b_i= M_i'u_i\) for some \(u_i\}\) and \(S_1S_2'\) is the linear span of the set of all \(x_1x_2'\) with \(x_i\in S_i\). Explicit formulae are obtained for the estimators of \((\mu,\Sigma)\). These estimators are investigated through a large class of loss functions and other principles. None of the matrices \(A,\Sigma, X_i,K_i\) and \(M_i\) are assumed to have full column rank. For robust studies, elliptical \(Y\) is considered when it is appropriate.


62H12 Estimation in multivariate analysis
62J05 Linear regression; mixed models
Full Text: DOI


[1] Anderson, T.W., An introduction to multivariate analysis., (1984), Wiley New York · Zbl 0651.62041
[2] Anderson, T.W.; Olkin, I., Maximum-likelihood estimation of parameters of a multivariate normal distribution, Linear alg. appl., 70, 147-171, (1985) · Zbl 0586.62074
[3] Arnold, S.F., The theory of linear models and multivariate analysis., (1981), Wiley New York
[4] Calvert, B.; Seber, G.A.F., Minimization of functions of a positive semidefinite matrix A subject to AX=0, J. multivariate anal., 8, 173-180, (1978)
[5] Chan, N.N.; Keung, T.K., Linear hypotheses made explicit, Commun. statist. theor.-meth., 16, 387-400, (1997) · Zbl 0898.62085
[6] Dykstra, R.L., Establishing the positive definiteness of the sample covariance matrix, Ann. math. statist., 41, 2153-2154, (1970) · Zbl 0212.22202
[7] Eaton, M.L., Multivariate statistics., (1983), Wiley New York · Zbl 0587.62097
[8] Fujikoshi, Y., On the asymptotic non-null distributions of the LR criterion in a general MANOVA, Canadian J. statist., 2, 1-12, (1974) · Zbl 0374.62066
[9] Gupta, A.K.; Varga, T., Elliptically contoured models in statistics., (1993), Kluwer Academic Publishers Boston · Zbl 0789.62037
[10] Kruskal, W., The geometry of generalized inverse, J. roy. statist. soc. ser., B 37, 272-283, (1975) · Zbl 0318.15003
[11] Muirhead, R.J., Aspects of multivariate statistical theory., (1982), Wiley New York · Zbl 0556.62028
[12] Potthoff, R.F.; Roy, S.N., A generalized multivariate analysis of variance model useful especially for growth curve problems, Biometrika, 51, 313-326, (1964) · Zbl 0138.14306
[13] Rao, C.R., Linear statistical inference and its applications., (1973), Wiley New York · Zbl 0169.21302
[14] Rao, C.R.; Mitra, S.K., Generalized inverse of matrices and its applications., (1971), Wiley New York
[15] von Rosen, D., The growth curve model: a review, Commun. statist.-theor. meth., 20, 9, 2791-2822, (1991) · Zbl 0800.62450
[16] von Rosen, D., Moments of estimators, Statistics, 22, 111-131, (1991) · Zbl 0738.62067
[17] Wong Chi Song, On the use of differentials in statistics, Linear algebra appl., 70, 282-299, (1985) · Zbl 0592.62058
[18] Wong Chi Song, Modern analysis and algebra., (1986), Xian University Press Xian
[19] Wong Chi Song, Linear models in a general parametric form, Commun. statist.-theory meth., 18, 8, 3095-3115, (1989) · Zbl 0696.62281
[20] Wong Chi Song, Linear models in a general parametric form, Sankhya, ser., A 55, 130-149, (1993) · Zbl 0791.62075
[21] Wong Chi Song, Liu Dongsheng, 1995. Moments of generalized Wishart distributions. J. Multivariate Anal. 52 280-294. · Zbl 0877.62051
[22] Wong Chi Song, Masaro, Joe, Deng, Weicai, 1995. Estimating covariance in a growth curve model. Linear Algebra Appl. 214, 103-118. · Zbl 0812.62062
[23] Wong Chi Song, Masaro, Joe, Wang, T., 1991. Multivariate versions of Cochran theorems. J. Multivariate Anal. 39, 154-174. · Zbl 0749.62037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.