×

Computational aspects of the ultra-weak variational formulation. (English) Zbl 1015.65064

Summary: The ultra-weak variational formulation approach has been proposed as an effective method for solving Helmholtz problems with high wave numbers. However, for coarse meshes the method can suffer from instability. In this paper we consider computational aspects of the ultra-weak variational formulation for the inhomogeneous Helmholtz problem. We introduce a method to improve the UWVF scheme and we compare iterative solvers for the resulting linear system. Computations for the acoustic transmission problem in 2D show that the new approach enables Helmholtz problems to be solved on a relatively coarse mesh for a wide range of wave numbers.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
76Q05 Hydro- and aero-acoustics
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Babuska, I.; Melenk, J. M., The partition of unity method, Int. J. Numer. Meth. Eng., 40, 727 (1997) · Zbl 0949.65117
[2] Benamou, J. D.; Despres, B., A domain decomposition method for the Helmholtz equation and related optimal control problems, J. Comput. Phys., 136, 68 (1997) · Zbl 0884.65118
[3] Cessenat, O.; Despres, B., Application of an ultra weak variational formulation of elliptic PDEs to the two-dimension Helmholtz problem, SIAM J. Numer. Anal., 35, 255 (1998) · Zbl 0955.65081
[4] Cessenat, O., Application d’une Nouvelle Formulation Variationelle des Equations d’Ondes Harmonigues, Problemes de Helmholtz 2D et de Maxwell 3D (1996)
[5] Despres, B., Sur une formulation variationnelle de type ultra-faible, Comptes Rendus de l Academic des Sciences Series I, 318, 939 (1994) · Zbl 0806.35026
[6] Harari, I.; Hughes, T. J.R., Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains, Comput. Meth. Appl. Mech. Eng., 98, 411 (1992) · Zbl 0762.76053
[7] Ihlenburg, F.; Babuska, I., Finite element solution of the Helmholtz equation with high wave number part I: The h-version of the FEM, Comput. Math. Appl., 30, 9 (1995) · Zbl 0838.65108
[8] Ihlenburg, F.; Babuska, I., Finite element solution of the Helmholtz equation with high wave number part II: The h-p version of the FEM, SIAM J. Numer. Anal., 34, 315 (1997) · Zbl 0884.65104
[9] Laghrouche, O.; Bettess, P., Short wave modelling using special finite elements, J. Comput. Acous., 8, 189 (2000) · Zbl 1360.76146
[10] Monk, P.; Wang, D., A least squares method for the Helmholtz equation, Comput. Meth. Appl. Mech. Eng., 175, 121 (1999) · Zbl 0943.65127
[11] Oberai, A. A.; Pinsky, P. M., A residual-based finite element method for the Helmholtz equation, Int. J. Numer. Meth. Eng., 49, 399 (2000) · Zbl 0984.76051
[12] Ortiz, P.; Sanchez, E., An improved partition of the unity finite element model for diffraction problems, Int. J. Numer. Meth. Eng., 50, 2727 (2001) · Zbl 1098.76576
[13] Sleijpen, G. L.G.; Fokkema, D. R., BiCGstab(ℓ) for linear equations involving unsymmetric matrices with complex spectrum, Electron. Trans. Numer. Anal., 1, 33 (1993) · Zbl 0820.65016
[14] Stojek, M., Least-squares Trefftz-type elements for the Helmholtz equation, Int. J. Numer. Meth. Eng., 41, 831 (1998) · Zbl 0909.76052
[15] Thompson, L. L.; Pinsky, P. M., A Galerkin least-squares finite element method for the two-dimensional Helmholtz equation, Int. J. Numer. Meth. Eng., 38, 371 (1995) · Zbl 0844.76060
[16] Van Der Vorst, H. A., Bi-CGStab: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 631-644 (1992) · Zbl 0761.65023
[17] Weiss, R., Parameter-Free Iterative Linear Solvers (1996), Akademie Verlag: Akademie Verlag Berlin · Zbl 0858.65031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.