Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems. (English) Zbl 1015.65068

A mixed finite volume method on quadrilateral grids for elliptic problems written as a system of two first order partial differential equations in the state variable and its flux is constructed and analyzed. An important point is that no staggered grids or covolumes are used to stabilize the system. Only a single primary grid system is adopted, and the degrees of freedom are imposed on the interfaces. The approximate flux is sought in the lowest-order Raviart-Thomas space and the pressure field in the rotated-Q1 nonconforming space. Furthermore, it is demonstrated that the present finite volume method can be interpreted as a rotated-Q1 nonconforming finite element method for the pressure with a simple local recovery of flux. Numerical results are presented for a variety of problems which confirm the usefulness and effectiveness of the method.


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J55 Systems of elliptic equations, boundary value problems (MSC2000)
76M12 Finite volume methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage


Full Text: DOI


[1] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 7 – 32 (English, with French summary). · Zbl 0567.65078
[2] Susanne C. Brenner, An optimal-order multigrid method for \?1 nonconforming finite elements, Math. Comp. 52 (1989), no. 185, 1 – 15. · Zbl 0664.65103
[3] Franco Brezzi, Jim Douglas Jr., Michel Fortin, and L. Donatella Marini, Efficient rectangular mixed finite elements in two and three space variables, RAIRO Modél. Math. Anal. Numér. 21 (1987), no. 4, 581 – 604 (English, with French summary). · Zbl 0689.65065
[4] Franco Brezzi, Jim Douglas Jr., and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), no. 2, 217 – 235. · Zbl 0599.65072 · doi:10.1007/BF01389710
[5] Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[6] Z. Cai, J. E. Jones, S. F. McCormick, and T. F. Russell, Control-volume mixed finite element methods, Comput. Geosci. 1 (1997), no. 3-4, 289 – 315 (1998). · Zbl 0941.76050 · doi:10.1023/A:1011577530905
[7] Zhangxin Chen, Analysis of mixed methods using conforming and nonconforming finite element methods, RAIRO Modél. Math. Anal. Numér. 27 (1993), no. 1, 9 – 34 (English, with English and French summaries). · Zbl 0784.65075
[8] Z. CHEN, Multigrid algorithms for mixed methods for second order elliptic problems, IMA Preprint Series #1218, March 1994.
[9] Zhangxin Chen and Peter Oswald, Multigrid and multilevel methods for nonconforming \?\(_{1}\) elements, Math. Comp. 67 (1998), no. 222, 667 – 693. · Zbl 0893.65060
[10] S. H. CHOU AND S. HE, On the regularity and uniformness conditions on quadrilateral grids, submitted to Comput. Methods Appl. Mech. Engrg., (2001). · Zbl 1030.65124
[11] So-Hsiang Chou and Do Y. Kwak, Mixed covolume methods on rectangular grids for elliptic problems, SIAM J. Numer. Anal. 37 (2000), no. 3, 758 – 771. · Zbl 0948.65124 · doi:10.1137/S0036142996305534
[12] So-Hsiang Chou, Do Y. Kwak, and Panayot S. Vassilevski, Mixed covolume methods for elliptic problems on triangular grids, SIAM J. Numer. Anal. 35 (1998), no. 5, 1850 – 1861. · Zbl 0914.65107 · doi:10.1137/S0036142997321285
[13] S. H. CHOU, D. Y. KWAK AND K. Y. KIM, A general framework for constructing and analyzing mixed finite volume methods on quadrilateral grids: the overlapping covolume case, accepted for publication in SIAM J. Numer. Anal. (2001). · Zbl 1007.65091
[14] S. H. CHOU AND S. TANG, Conservative \(P1\) conforming and nonconforming Galerkin FEMs: effective flux evaluation via a nonmixed method approach, SIAM J. Numer. Anal. 38 (2000). pp. 660-680. CMP 2000:16 · Zbl 0986.76036
[15] S. H. CHOU AND S. TANG, Comparing two approaches of analyzing mixed finite volume methods, BGSU report, Bowling Green State University, OH. (2000).
[16] So-Hsiang Chou and Panayot S. Vassilevski, A general mixed covolume framework for constructing conservative schemes for elliptic problems, Math. Comp. 68 (1999), no. 227, 991 – 1011. · Zbl 0924.65099
[17] B. Courbet and J. P. Croisille, Finite volume box schemes on triangular meshes, RAIRO Modél. Math. Anal. Numér. 32 (1998), no. 5, 631 – 649 (English, with English and French summaries). · Zbl 0920.65065
[18] J. DOUGLAS, JR., R. E. EWING AND M. F. WHEELER, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Anal. Numér. 17 (1983), pp. 17-33. · Zbl 0516.76094
[19] Jim Douglas Jr., Richard E. Ewing, and Mary Fanett Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Anal. Numér. 17 (1983), no. 1, 17 – 33 (English, with French summary). · Zbl 0516.76094
[20] R. S. Falk and J. E. Osborn, Error estimates for mixed methods, RAIRO Anal. Numér. 14 (1980), no. 3, 249 – 277 (English, with French summary). · Zbl 0467.65062
[21] Michel Fortin, An analysis of the convergence of mixed finite element methods, RAIRO Anal. Numér. 11 (1977), no. 4, 341 – 354, iii (English, with French summary). · Zbl 0373.65055
[22] FRAEIJIS DE VEUBEKE B., Displacement and equilibrium models in the finite element method, in Stress Analysis , John Wiley and Sons, New York(1965). · Zbl 1065.74625
[23] Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. · Zbl 0585.65077
[24] Claes Johnson and Vidar Thomée, Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numér. 15 (1981), no. 1, 41 – 78 (English, with French summary). · Zbl 0476.65074
[25] J. E. JONES A mixed finite volume element method for accurate computation of fluid velocities in porous media, Ph. D. thesis, University of Colorado at Denver, (1995).
[26] C. LEE, A nonconforming multigrid method using conforming subspaces, In the Proceedings of the Sixth Copper Mountain Conference on Multigrid Methods, Eds: N. D. Melson and T. A. Manteuffel and S. F. McCormick, (1993), pp 317-330.
[27] Luisa Donatella Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal. 22 (1985), no. 3, 493 – 496. · Zbl 0573.65082 · doi:10.1137/0722029
[28] L. Donatella Marini and P. Pietra, An abstract theory for mixed approximations of second order elliptic problems, Mat. Apl. Comput. 8 (1989), no. 3, 219 – 239 (English, with Portuguese summary). · Zbl 0711.65091
[29] Stephen F. McCormick, Multilevel adaptive methods for partial differential equations, Frontiers in Applied Mathematics, vol. 6, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. · Zbl 0707.65080
[30] M. Ohlberger, Convergence of a mixed finite elements – finite volume method for the two phase flow in porous media, East-West J. Numer. Math. 5 (1997), no. 3, 183 – 210. · Zbl 0899.76261
[31] K. PRUESS, TOUGH user’s guide, Nuclear Reulatory Commission, report NUREG/CR-4645, (1987).
[32] K. PRUESS, TOUGH2: A general numerical simulator for multiphase fluid and heat flow, LBL report LBL-29400, Berkeley, California, (1991).
[33] R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element, Numer. Methods Partial Differential Equations 8 (1992), no. 2, 97 – 111. · Zbl 0742.76051 · doi:10.1002/num.1690080202
[34] P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Springer, Berlin, 1977, pp. 292 – 315. Lecture Notes in Math., Vol. 606.
[35] Riccardo Sacco and Fausto Saleri, Stabilization of mixed finite elements for convection-diffusion problems, CWI Quarterly 10 (1997), no. 3-4, 301 – 315. International Workshop on the Numerical Solution of Thin-layer Phenomena (Amsterdam, 1997). · Zbl 0908.65100
[36] Riccardo Sacco and Fausto Saleri, Mixed finite volume methods for semiconductor device simulation, Numer. Methods Partial Differential Equations 13 (1997), no. 3, 215 – 236. , https://doi.org/10.1002/(SICI)1098-2426(199705)13:33.0.CO;2-Q · Zbl 0890.65132
[37] Endre Süli, The accuracy of cell vertex finite volume methods on quadrilateral meshes, Math. Comp. 59 (1992), no. 200, 359 – 382. · Zbl 0767.65072
[38] J.-M. Thomas and D. Trujillo, Mixed finite volume methods, Internat. J. Numer. Methods Engrg. 46 (1999), no. 9, 1351 – 1366. Fourth World Congress on Computational Mechanics (Buenos Aires, 1998). , https://doi.org/10.1002/(SICI)1097-0207(19991130)46:93.0.CO;2-0
[39] J. WANG AND T. MATHEW, Mixed finite element methods over quadrilaterals, In the Proceedings of the Third International Conference on Advances in Numerical Methods and Applications, Eds: I. T. Dimov, Bl. Sendov, and P. Vassilevski, World Scientific, (1994), pp 203-214. · Zbl 0813.65120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.