×

A relative Dobrowolski lower bound over abelian extensions. (English) Zbl 1016.11026

Let \(K\) be a number field, \(\alpha\neq 0\) an algebraic number which is not a root of unity. Lehmer’s problem [D. H. Lehmer, Ann. Math. (2) 34, 461-479 (1933; Zbl 0007.19904)] consists in asking for an absolute constant \(c_0>0\) such that \(h(\alpha)\geq\frac{c_0}{[\mathbb{Q}(\alpha):\mathbb{Q}]}\), where \(h(\alpha)\) denotes the absolute logarithmic height of \(\alpha\). This problem remains still open and the best unconditional bound already obtained is due to E. Dobrowolski [Acta Arith. 34, 391-401 (1979; Zbl 0416.12001)], \(h(\alpha)\geq\frac{c_1}d (\frac{\log(3d)}{\log\log(3d)})^{-3}\), where \(D=[\mathbb{Q}(\alpha):\mathbb{Q}]\) and \(c_1>0\) is an absolute constant. In some special cases, not only Lehmer’s inequality is true but also sharper bounds are obtained. Suppose \(\mathbb{Q}(\alpha)/\mathbb{Q}\) is an abelian extension. Then the first author and R. Dvornicich proved in [J. Number Theory 80, 260-272 (2000; Zbl 0973.11092)] that \(h(\alpha)\geq\frac{\log 5}{12}\). In fact, this result is a special case of a more general one due to A. Schinzel [Acta Arith. 24, 385-399 (1973; Zbl 0275.12004), Addendum ibid. 26, 329-361 (1973; Zbl 0312.12001)], but with the extra hypothesis that \(|\alpha|\neq 1\). The main goal of the paper is to generalize both results.
More precisely, let \(K\) be a number field and \(L\) an abelian extension of \(K\). Then for every nonzero algebraic number \(\alpha\) which is not a root of unity, \[ h(\alpha)\geq\frac{c_2(K)}d\left(\frac{\log(2d)}{\log\log(5d)}\right)^{-13}, \] where \(d=[L(\alpha):L]\) and \(c_2(K)>0\) is a constant depending on \(K\).
Recently a result due to the second author and E. Bombieri showed that if \(K\) is a number field and \(L\) is the compositum of all extensions of \(K\) of degree at most \(d\), then given \(T>0\) the number of elements of \(L\) of height at most \(T\) is finite.
Dobrowolski’s result can be phrased in terms of Mahler measure as follows. Let \(F\in\mathbb{Z}[x]\) and suppose \(\alpha\) is not a root of \(F\), then \(\log M(F)=\deg(F)h(\alpha)\), where \(M(F)\) denotes the Mahler measure of \(F\). The quoted result is expressed as \(\log M(F)\geq c_1(\frac{\log(3d)}{\log\log(3d)})^{-3}\), where \(d=\deg(F)\) and we assume that \(F\) is not a cyclotomic polynomial. The first author and S. David extended this result to polynomials in \(n\) variables in [Acta Arith. 92, 339-366 (2000; Zbl 0948.11025)] obtaining \[ \log M(F)\geq\frac 1{c_3(n+1)^{1+4/n}n^2}\left(\frac{\log((n+1)d)}{\log((n+1)\log((n+1)d))}\right)^{-3}, \] where \(c_3>0\) is an absolute constant and \(d=\deg(f)\). In this paper, as a consequence of the first result cited above and a density result of F. Amoroso and S. David (loc. cit.), it is proved that if \(F\in\mathbb{Z}[x_1,\cdots,x_n]\) is irreducible and not an extended cyclotomic polynomial and \(d=\min_{j=1,\cdots,n}\deg_{x_j}(F)\geq 1\), then \[ \log M(F)\geq c_2(\mathbb{Q})\left(\frac{\log(2d)}{\log\log(5d)}\right)^{-13}. \] This estimate is stronger than the one in [F. Amoroso and S. David, loc. cit.] if at least one of the partial degrees of \(F\) is small.

MSC:

11G50 Heights
11J99 Diophantine approximation, transcendental number theory

References:

[1] F. Amoroso - S. David , Le problème de Lehmer en dimension supérieure , J. reine angew. Math . 513 ( 1999 ), 145 - 179 . MR 1713323 | Zbl 1011.11045 · Zbl 1011.11045 · doi:10.1515/crll.1999.058
[2] F. Amoroso - S. David , Minoration de la hauteur normalisée des hypersurfaces , Acta Arith . 92 ( 2000 ), no. 4 , 340 - 366 . Article | MR 1760242 | Zbl 0948.11025 · Zbl 0948.11025
[3] F. Amoroso - R. Dvornicich , A lower bound for the height in Abelian extensions , J. Number Theory 80 ( 2000 ), no. 2 , 260 - 272 . MR 1740514 | Zbl 0973.11092 · Zbl 0973.11092 · doi:10.1006/jnth.1999.2451
[4] D. Boyd , Kronecker’s theorem and Lehmer’s problem for polynomials in several variables , J. Number Theory 13 ( 1980 ), 116 - 121 . MR 602452 | Zbl 0447.12003 · Zbl 0447.12003 · doi:10.1016/0022-314X(81)90033-0
[5] P. Philippon - S. David , Minorations des hauteurs normalisées des sous-variétés des tores , Ann. Scuola Norm. Sup. Pisa a. Sci ( 4 ) 28 ( 1999 ), 489 - 543 . Numdam | MR 1736526 | Zbl 1002.11055 · Zbl 1002.11055
[6] E. Dobrowolski , On a question of Lehmer and the number of irreducible factors of a polynomial , Acta Arith . 34 ( 1979 ), 391 - 401 . Article | MR 543210 | Zbl 0416.12001 · Zbl 0416.12001
[7] M. Laurent , Equations diophantiennes exponentielles , Invent. Math. 78 ( 1984 ), 299 - 327 . MR 767195 | Zbl 0554.10009 · Zbl 0554.10009 · doi:10.1007/BF01388597
[8] W. Lawton , A generalization of a theorem of Kronecker , J. of the Science Faculty of Chiangmai University ( Thailand ) 4 ( 1977 ), 15 - 23 . Zbl 0447.12004 · Zbl 0447.12004
[9] D.H. Lehmer , Factorization of certain cyclotomic functions , Ann. of Math . 34 ( 1933 ), 461 - 479 . MR 1503118 | Zbl 0007.19904 | JFM 59.0933.03 · Zbl 0007.19904 · doi:10.2307/1968172
[10] W. Narkiewicz , ”Elementary and analytic theory of algebraic numbers” , Second edition, Springer-Verlag, Berlin, PWN-Polish Scientific Publishers , Warsaw , 1990 . MR 1055830 | Zbl 0717.11045 · Zbl 0717.11045
[11] N. Northcott , An inequality in the theory of arithmetic on algebraic varieties , Proc. Camb. Philos. Soc. 45 ( 1949 ), 502 - 509 . MR 33094 | Zbl 0035.30701 · Zbl 0035.30701
[12] U. Rausch , On a theorem of Dobrowolski about the product of conjugate numbers , Colloq. Math. 50 ( 1985 ), no. 1 , 137 - 142 . MR 818097 | Zbl 0579.12001 · Zbl 0579.12001
[13] D. Roy - J. Thunder , An absolute Siegel’s lemma , J. reine angew. Math . 476 ( 1996 ), 1 - 12 . MR 1401695 | Zbl 0860.11036 · Zbl 0860.11036
[14] A. Schinzel , On the product of the conjugates outside the unit circle of an algebraic number , Acta Arith . 24 ( 1973 ), 385 - 399 . Addendum, ibid . 26 ( 1973 ), 329 - 361 . Article | MR 360515 | Zbl 0275.12004 · Zbl 0275.12004
[15] W.M. Schmidt , ” Diophantine approximations and Diophantine equations ”, Lecture Notes in Mathematics 1467 , Springer-Verlag , Berlin , 1991 . MR 1176315 | Zbl 0754.11020 · Zbl 0754.11020 · doi:10.1007/BFb0098246
[16] C.J. Smyth , A Kronecker-type theorem for complex polynomials in several variables , Canad. Math. Bull. 24 ( 1981 ), 447 - 452 . Errata, ibid . 25 ( 1982 ), 504 . MR 644534 | Zbl 0475.12002 · Zbl 0475.12002 · doi:10.4153/CMB-1981-068-8
[17] L.C. Washington , ” Introduction to Cyclotomic Fields ”, Springer-Verlag, New York , 1982 . MR 718674 | Zbl 0484.12001 · Zbl 0484.12001
[18] S. Zhang , Positive line bundles on arithmetic surfaces , Ann. of Math . 136 ( 1992 ), 569 - 587 . MR 1189866 | Zbl 0788.14017 · Zbl 0788.14017 · doi:10.2307/2946601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.