×

Explicit computation of the relaxed density coming from a three-dimensional optimal design problem. (English) Zbl 1016.49015

Summary: We analyze the relaxation of a typical three-dimensional optimal design problem in conductivity, consisting of minimizing the square of the \(L^2\)-norm of the underlying electric potential under a volume constraint, via a variational reformulation of the problem. Our main achievement is the explicit characterization of the “constrained quasiconvexification” of the cost density.

MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
49Q20 Variational problems in a geometric measure-theoretic setting
78A25 Electromagnetic theory (general)
Full Text: DOI

References:

[1] J.C. Bellido, Análisis de algunos problemas de optimización no locales, Ph.D. Thesis, Universidad de Sevilla, 2001 (in Spanish).; J.C. Bellido, Análisis de algunos problemas de optimización no locales, Ph.D. Thesis, Universidad de Sevilla, 2001 (in Spanish).
[2] Bellido, J. C.; Pedregal, P., Optimal design via variational principlesthe one-dimensional case, J. Math. Pures Appl., 80, 2, 245-261 (2000) · Zbl 0985.49006
[3] Bellido, J. C.; Pedregal, P., Explicit quasiconvexification for some cost functionals depending on the derivatives of the state in optimal design, DCDS-A, 8, 4, 967-982 (2002) · Zbl 1035.49008
[4] J.C. Bellido, P. Pedregal, Optimal control via variational principles: the three dimensional case (2002), submitted for publication.; J.C. Bellido, P. Pedregal, Optimal control via variational principles: the three dimensional case (2002), submitted for publication. · Zbl 1038.49020
[5] Fonseca, I.; Kinderlehrer, D.; Pedregal, P., Energy functionals depending on elastic strain and chemical composition, Calc. Var., 2, 283-313 (1994) · Zbl 0800.49030
[6] Fonseca, I.; Müller, S., \(A\)-cuasiconvexity, lower semicontinuity, and Young measures, SIAM J. Math. Anal., 30, 6, 1355-1390 (1999) · Zbl 0940.49014
[7] Girault, V.; Raviart, P. A., Finite Elements Methods for Navier-Stokes Equations, Theory and Algorithms (1985), Springer: Springer Berlin, Heidelberg, New York, Tokyo · Zbl 0396.65070
[8] Grabovsky, Y., Optimal design problems for two-phase conducting composites with weakly discontinuous objective functionals, Adv. Appl. Math., 27, 4, 683-704 (2001) · Zbl 1001.49002
[9] Kohn, R. V.; Vogelius, M., Relaxation of a variational method for impedance computed tomography, Comm. Pure Appl. Math., 40, 745-777 (1987) · Zbl 0659.49009
[10] Lipton, R.; Velo, A., Optimal design of gradient fields with applications to electrostatics, (Cioranescu, D.; Murat, F.; Lions, J. L., Nonlinear P.D.E. and their Applications, College de France Seminar (1999), Chapman & Hall: Chapman & Hall London) · Zbl 1080.78003
[11] Lurie, K. A.; Cherkaev, A. V., Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion, Proc. Roy. Soc. Edinburgh A, 99, 71-87 (1984) · Zbl 0564.73079
[12] Lurie, K. A.; Cherkaev, A. V., Exact estimates of the conductivity of a binary mixtures of isotropic components, Proc. Roy. Soc. Edinburgh A, 104, 21-38 (1986) · Zbl 0623.73011
[13] Murat, F., Contre-exemples pur divers problèmes ou le contrôle intervient dans les coefficients, Ann. Mat Pura Appl., 112, 49-68 (1977) · Zbl 0349.49005
[14] F. Murat, L. Tartar. Calculus of variations and homogenization, in: A. Cherkaev, R.V. Kohn (Eds.), Topics in the Mathematical Modelling of Composites Materials, Birkhäuser, Basel, 1997, pp. 139-173 (French version: F. Murat, Calcul des variations et homogénéisation, in: Les mèthodes de l’homogénéisation, théorie et applications en physique, Coll. Dir. Etudes et Recherches EDF, Eyrolles, 1985, pp. 319-369).; F. Murat, L. Tartar. Calculus of variations and homogenization, in: A. Cherkaev, R.V. Kohn (Eds.), Topics in the Mathematical Modelling of Composites Materials, Birkhäuser, Basel, 1997, pp. 139-173 (French version: F. Murat, Calcul des variations et homogénéisation, in: Les mèthodes de l’homogénéisation, théorie et applications en physique, Coll. Dir. Etudes et Recherches EDF, Eyrolles, 1985, pp. 319-369).
[15] F. Murat, L. Tartar, H-convergence, in: A. Cherkaev, R.V. Kohn (Eds.), Topics in the Mathematical Modelling of Composites Materials, Boston, Birkhäuser, 1997, pp. 21-44 (French version: F. Murat, H-convergence, Mimeographed notes, Séminaire d’Analyse Fonctionnelle et Numérique de l’Université d’Alger, 1978).; F. Murat, L. Tartar, H-convergence, in: A. Cherkaev, R.V. Kohn (Eds.), Topics in the Mathematical Modelling of Composites Materials, Boston, Birkhäuser, 1997, pp. 21-44 (French version: F. Murat, H-convergence, Mimeographed notes, Séminaire d’Analyse Fonctionnelle et Numérique de l’Université d’Alger, 1978).
[16] F. Murat, L. Tartar, On the control of coefficients in partial differential equations, in: A. Cherkaev, R.V. Kohn (Eds.), Topics in the Mathematical Modelling of Composites Materials, Birkhäuser, Boston, 1997, pp. 1-8 (French version: L. Tartar, Problèmes de contrôle des coefficientes dans des équations aux dérivées partiales, Lectures Notes in Economics and Mathematical Systems, Vol. 107 (Control Theory, Numerical Methods and Computer Systems Modelling) Springer, Berlin, 1975, pp. 420-426).; F. Murat, L. Tartar, On the control of coefficients in partial differential equations, in: A. Cherkaev, R.V. Kohn (Eds.), Topics in the Mathematical Modelling of Composites Materials, Birkhäuser, Boston, 1997, pp. 1-8 (French version: L. Tartar, Problèmes de contrôle des coefficientes dans des équations aux dérivées partiales, Lectures Notes in Economics and Mathematical Systems, Vol. 107 (Control Theory, Numerical Methods and Computer Systems Modelling) Springer, Berlin, 1975, pp. 420-426). · Zbl 0913.35020
[17] Pedregal, P., Parametrized Measures and Variational Principles, Progress in Nonlinear Partial Differential Equations (1997), Birkhäuser: Birkhäuser Basel · Zbl 0879.49017
[18] Pedregal, P., Optimal design and constrained quasiconvexity, SIAM J. Math. Anal., 32, 854-869 (2000) · Zbl 0995.49004
[19] P. Pedregal, Constrained quasiconvexification of the square of the gradient of the state in optimal design, preprint, 2001.; P. Pedregal, Constrained quasiconvexification of the square of the gradient of the state in optimal design, preprint, 2001.
[20] Pedregal, P., Fully explicit quasiconvexification of the square of the gradient of the state in optimal design, ERA-AMS, 7, 72-78 (2001) · Zbl 0980.49021
[21] Tartar, L., Estimations fines de coefficients homogénéisés, (Krée, P., Ennio de Giorgi Colloquium. Ennio de Giorgi Colloquium, Pitman Research Notes in Mathematics, Vol. 125 (1985), Pitman: Pitman London), 168-187 · Zbl 0586.35004
[22] Tartar, L., Remarks on optimal design problems, (Buttazzo, G.; Bouchitte, G.; Suchet, P., Homogenization and Continuum Mechanics (1994), World Scientific: World Scientific Singapore), 279-296 · Zbl 0884.49015
[23] L. Tartat, An Introduction to Homogenization Method in Optimal Design, Lecture Notes in Mathematics, Springer, Berlin, 2000.; L. Tartat, An Introduction to Homogenization Method in Optimal Design, Lecture Notes in Mathematics, Springer, Berlin, 2000.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.