The minimum maximum of a continuous martingale with given initial and terminal laws. (English) Zbl 1016.60047

Let \((M_t)_{0\leq t\leq 1}\) be a continuous martingale with initial law \(M_0\sim \mu_0\), and terminal law \(M_1\sim \mu_1\), and let \(S=\sup_{0\leq t\leq 1}M_t\). This paper proves that there exists a greatest lower bound with respect to stochastic ordering of probability measures, on the law of \(S\). An explicit construction of this bound is given. Furthermore a martingale is constructed which attains this minimum by solving a Skorokhod embedding problem. The form of this martingale is motivated by a simple picture. The result is applied to the robust hedging of a forward start digital option.


60G44 Martingales with continuous parameter
60G40 Stopping times; optimal stopping problems; gambling theory
91B28 Finance etc. (MSC2000)
60G30 Continuity and singularity of induced measures
Full Text: DOI


[1] AZÉMA, J. and YOR, M. (1979). Une solution simple au problème de Skorokhod. Séminaire de Probabilités XIII. Lecture Notes in Math. 721 90-115. Springer, Berlin.
[2] BLACKWELL, D. and DUBINS, L. D. (1963). A converse to the dominated convergence theorem. Illinois J. Math. 7 508-514. · Zbl 0146.37503
[3] BROWN, H., HOBSON, D. G. and ROGERS, L. C. G. (2001). Robust hedging of barrier options. Math. Finance 11 285-314. · Zbl 1047.91024
[4] CHACON, R. and WALSH, J. B. (1976). One-dimensional potential embedding. Séminaire de Probabilités X. Lecture Notes in Math. 511 19-23. Springer, Berlin. · Zbl 0329.60041
[5] DUBINS, L. D. (1968). On a theorem of Skorokhod. Ann. Math. Statist. 39 2094-2097. · Zbl 0185.45103
[6] DUBINS, L. D. and GILAT, D. (1978). On the distribution of maxima of martingales. Proc. Amer. Math. Soc. 68 337-338. JSTOR: · Zbl 0351.60049
[7] HOBSON, D. G. (1998). The maximum maximum of a martingale. Séminaire de Probabilités XXXII. Lecture Notes in Math. 1686 250-263. Springer, Berlin. · Zbl 0935.60028
[8] HOBSON, D. G. (1998). Robust hedging of the Lookback option. Finance and Stochastics 2 329-347. · Zbl 0907.90023
[9] HOFFMANN-JØRGENSEN, J. (1994). Probability with a View Toward Statistics 1. Chapman and Hall, New York. · Zbl 0821.62002
[10] KERTZ, R. P. and RÖSLER, U. (1990). Martingales with given maxima and terminal distributions. Israel J. Math. 69 173-192. · Zbl 0743.60046
[11] MEYER, P. A. (1966). Probability and Potentials. Blaidsell, Waltham, MA. · Zbl 0138.10401
[12] PERKINS, E. (1986). The Cereteli-Davis solution H 1-embedding problem and an optimal embedding in Brownian motion. In Seminar on Stochastic Processes (E. Çinlar, K. L. Chung and R. K. Getoor, eds.) 172-223. Birkhäuser, Boston. · Zbl 0607.60071
[13] PERKINS, E. (2000). Personal communication.
[14] REVUZ, D. and YOR, M. (1991). Continuous Martingales and Brownian Motion. Springer, Berlin. · Zbl 0731.60002
[15] ROGERS, L. C. G. (1981). Williams’ characterisation of the Brownian excursion law: proof and applications. Séminaire de Probabilités XV. Lecture Notes in Math. 850 227-250. Springer, Berlin. · Zbl 0462.60078
[16] ROGERS, L. C. G. (1989). A guided tour through excursions. Bull. London Math. Soc. 21 305-341. · Zbl 0689.60075
[17] ROGERS, L. C. G. (1993). The joint law of the maximum and the terminal value of a martingale. Probab. Theory Related Fields 95 451-466. · Zbl 0794.60042
[18] ROST, H. (1971). The stopping distributions of a Markov process. Invent. Math. 14 1-16. · Zbl 0225.60025
[19] STRASSEN, V. (1965). The existence of probability measures with given marginals. Ann. Math. Statist. 36 423-439. · Zbl 0135.18701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.