zbMATH — the first resource for mathematics

Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. (English) Zbl 1016.65001
Summary: We present a generalized polynomial chaos algorithm for the solution of stochastic elliptic partial differential equations subject to uncertain inputs. In particular, we focus on the solution of the Poisson equation with random diffusivity, forcing and boundary conditions. The stochastic input and solution are represented spectrally by employing the orthogonal polynomial functionals from the Askey scheme, as a generalization of the original polynomial chaos idea of N. Wiener [Am. J. Math. 60, 897-936 (1938)]. A Galerkin projection in random space is applied to derive the equations in the weak form. The resulting set of deterministic equations for each random mode is solved iteratively by a block Gauss-Seidel iteration technique. Both discrete and continuous random distributions are considered, and convergence is verified in model problems and against Monte Carlo simulations.

65C30 Numerical solutions to stochastic differential and integral equations
35R60 PDEs with randomness, stochastic partial differential equations
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65C05 Monte Carlo methods
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
Full Text: DOI
[1] Workshop on Validation and Verification of Computational Mechanics Codes, Technical report, Caltech, December 1998
[2] Workshop on Predictability of Complex Phenomena, Los Alamos, 6-8 December, 1999, Technical report
[3] Workshop on Decision Making Under Uncertainty, IMA, 16-17 September, 1999, Technical report
[4] W.L. Oberkampf, T.G. Trucano. Validation methodology in computational fluid dynamics. Technical Report AIAA 2000-2549, Sandia National Laboratories, Albuquerque, New Mexico, 2000
[5] Liu, W.K.; Belytschko, T.; Mani, A., Random field finite elements, Int. J. numer. meth. engrg., 23, 1831-1845, (1986) · Zbl 0597.73075
[6] Liu, W.K.; Belytcshko, T.; Mani, A., Probabilistic finite elements for nonlinear structural dynamics, Comput. meth. appl. mech. engrg., 56, 61-81, (1986) · Zbl 0576.73066
[7] Liu, W.K.; Belytschko, T.; Mani, A., Applications of probabilistic finite element methods in elastic/plastic dynamics, J. engrg. ind., ASME, 109, 2-8, (1987)
[8] Kleiber, M.; Hien, T.D., The stochastic finite element method, (1992), Wiley · Zbl 0727.73098
[9] F. Yamazaki, M. Shinozuka, G. Dasgupta, Neumann expansion for stochastic finite element analysis, Technical report, Department of Civil Engineering, Columbia University, 1985
[10] M. Shinozuka, G. Deodatis, Response variability of stochastic finite element systems, Technical report, Department of Civil Engineering, Columbia University, New York, 1986
[11] Ghanem, R.G.; Spanos, P., Stochastic finite elements: a spectral approach, (1991), Springer · Zbl 0722.73080
[12] Wiener, N., The homogeneous chaos, Amer. J. math., 60, 897-936, (1938) · JFM 64.0887.02
[13] Ghanem, R.G., Ingredients for a general purpose stochastic finite element formulation, Comp. meth. appl. mech. engrg., 168, 19-34, (1999) · Zbl 0943.65008
[14] Chorin, A.J., Hermite expansion in Monte-Carlo simulations, J. comput. phys., 8, 472-482, (1971) · Zbl 0229.65025
[15] Deb, M.K.; Babus̆ka, I.M.; Oden, J.T., Solution of stochastic partial differential equations using Galerkin finite element techniques, Comput. meth. appl. mech. engrg., 190, 6359-6372, (2001) · Zbl 1075.65006
[16] Cameron, R.H.; Martin, W.T., The orthogonal development of nonlinear functionals in series of fourier – hermite functionals, Ann. math., 48, 385, (1947) · Zbl 0029.14302
[17] D. Xiu, G.E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., in press · Zbl 1014.65004
[18] Askey, R.; Wilson, J., Some basic hypergeometric polynomials that generalize Jacobi polynomials, Mem. amer. math. soc., AMS providence, RI, 319, (1985) · Zbl 0572.33012
[19] D. Xiu, G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys., in press · Zbl 1047.76111
[20] Xiu, D.; Lucor, D.; Su, C.-H.; Karniadakis, G.E., Stochastic modeling of flow-structure iterations using generalized polynomial chaos, J. fluid engrg., 124, 51-59, (2002)
[21] Babus̆ka, I., On randomized solutions of laplace’s equation, Casopis pest. mat., 36, 269-276, (1961) · Zbl 0116.10503
[22] Bécus, G.A.; Cozzarelli, F.A., The random steady state diffusion problem. I. random generalized solutions to laplace’s equation, SIAM J. appl. math., 31, 134-147, (1976) · Zbl 0329.35004
[23] Bécus, G.A.; Cozzarelli, F.A., The random steady state diffusion problem. II. random solutions to nonlinear inhomogeneous, steady state diffusion problems, SIAM J. appl. math., 31, 148-158, (1976) · Zbl 0329.35005
[24] Bécus, G.A.; Cozzarelli, F.A., The random steady state diffusion problem. III. solutions to random diffusion problems by the method of random successive approximations, SIAM J. appl. math., 31, 159-178, (1976) · Zbl 0329.35006
[25] Papanicolaou, G.C., Diffusion in random media, (), 205-255 · Zbl 0846.60081
[26] Holden, H.; Oksendal, R.; Uboe, J.; Zhang, T., Stochastic partial differential equations: A modeling, white noise functional approach, (1996), Birkhäuser Boston · Zbl 0860.60045
[27] Matthies, H.G.; Bucher, C., Finite elements for stochastic media problems, Comput. meth. appl. mech. engrg., 168, 3-17, (1999) · Zbl 0953.74065
[28] Schoutens, W., Stochastic processes and orthogonal polynomials, (2000), Springer New York · Zbl 0960.60076
[29] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Technical Report 98-17, Department of Technical Mathematics and Informatics, Delft University of Technology, 1998
[30] Wiener, N., Nonlinear problems in random theory, (1958), MIT Technology Press and Wiley New York · Zbl 0121.12302
[31] Ogura, H., Orthogonal functionals of the Poisson process, IEEE trans. info. theory, IT-18, 473-481, (1972) · Zbl 0244.60044
[32] Loève, M., Probability theory, (1977), Springer · Zbl 0359.60001
[33] Karniadakis, G.E.; Sherwin, S.J., Spectral/hp element methods for CFD, (1999), Oxford University Press · Zbl 0954.76001
[34] Anders, M.; Hori, M., Three-dimensional stochastic finite element method for elasto-plastic bodies, Int. J. numer. meth. engrg., 51, 449-478, (2001) · Zbl 1015.74055
[35] Whittle, P., On stationary processes in the plane, Biometrika, 41, 434-449, (1954) · Zbl 0058.35601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.