Matthies, G.; Tobiska, L. The inf-sup condition for the mapped \(Q_k-P_{k-1}^{\text{disc}}\) element in arbitrary space dimensions. (English) Zbl 1016.65073 Computing 69, No. 2, 119-139 (2002). The authors consider the numerical solution of the Stokes and Navier Stokes equations by means of finite elements. They discuss the use of the \(Q_k-P_{k-1}^{\text{disc}}\) element and the stability of the process when calculating the velocity and pressure fields of incompressible flow. No actual physical illustration of the ideas is given. Reviewer: Ll.G.Chambers (Bangor) Cited in 22 Documents MSC: 65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 35Q30 Navier-Stokes equations 76M10 Finite element methods applied to problems in fluid mechanics 76D05 Navier-Stokes equations for incompressible viscous fluids Keywords:Babuška-Brezzi condition; Stokes problem; finite element method; Navier Stokes equations; stability; incompressible flow PDF BibTeX XML Cite \textit{G. Matthies} and \textit{L. Tobiska}, Computing 69, No. 2, 119--139 (2002; Zbl 1016.65073) Full Text: DOI