zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On properties of preinvex functions. (English) Zbl 1016.90056
Summary: We consider in this paper the class of preinvex functions introduced by {\it T. Weir} and {\it B. Mond} [ibid. 136, 29-38 (1988; Zbl 0663.90087)]; {\it T. Weir} and {\it V. Jeyakumar} [Bull. Aust. Math. Soc. 38, 177-189 (1988; Zbl 0639.90082)]. Under semi-continuity conditions, a determination of the satisfaction of preinvexity for a function can be achieved via an intermediate-point preinvexity check. A characterization of a preinvex function in terms of its relationship with an intermediate-point preinvexity and prequasi-invexity is provided.

90C30Nonlinear programming
Full Text: DOI
[1] Weir, T.; Mond, B.: Pre-invex functions in multiple objective optimization. J. math. Anal. appl. 136, 29-38 (1988) · Zbl 0663.90087
[2] Weir, T.; Jeyakumar, V.: A class of nonconvex functions and mathematical programming. Bull. austral. Math. soc. 38, 177-189 (1988) · Zbl 0639.90082
[3] Hanson, M. A.: On sufficiency of the Kuhn Tucker conditions. J. math. Anal. appl. 80, 545-550 (1981) · Zbl 0463.90080
[4] Ben-Israel, A.; Mond, B.: What is invexity?. J. austral. Math. soc. Ser. B 28, 1-9 (1986) · Zbl 0603.90119
[5] Craven, B. D.: Invex functions and constrained local minima. Bull. austral. Math. soc. 24, 357-366 (1981) · Zbl 0452.90066
[6] Pini, R.: Invexity and generalized convexity. Optimization 22, 513-525 (1991) · Zbl 0731.26009
[7] Craven, B. D.; Glover, B. M.: Invex function and duality. J. austral. Math. soc. Ser. A 39, 1-20 (1985) · Zbl 0565.90064
[8] Khan, Z. A.; Hanson, M. A.: On ratio invexity in mathematical programming. J. math. Anal. appl. 206, 330-336 (1997) · Zbl 0872.90094
[9] Mohan, S. R.; Neogy, S. K.: On invex sets and preinvex functions. J. math. Anal. appl. 189, 901-908 (1995) · Zbl 0831.90097
[10] Roberts, A. W.; Varberg, D. E.: Convex functions. (1973) · Zbl 0271.26009
[11] Nikodem, K.: On some class of midconvex functions. Ann. Pol math. 50, 145-151 (1989) · Zbl 0706.39004