×

Discrete planes, \({\mathbb Z}^2\)-actions, Jacobi-Perron algorithm and substitutions. (English) Zbl 1017.11006

This paper discusses an explicit method to build a discrete approximation of an irrational plane in \(\mathbb R^3\). This approximation can be described by a two-dimensional sequence, which is directly related to symbolic dynamics for a \(\mathbb Z^2\)-action by rotations on the unit circle. This sequence can be generated by applying the Jacobi-Perron algorithm to the coordinates of the unit vector orthogonal to the given plane. This paper attempts to generalize to higher dimensions well-known results for the usual continued fractions.

MSC:

11A55 Continued fractions
11J70 Continued fractions and generalizations
40A15 Convergence and divergence of continued fractions
68R15 Combinatorics on words
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] Chaos from order, a worked out example, Complex Systems, 1-67 (2001) · Zbl 1333.37006
[2] Sturmian sequences, Substitutions in Dynamics, Arithmetics and Combinatorics · Zbl 1069.68572
[3] Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin, 8, 181-207 (2001) · Zbl 1007.37001
[4] Trajectories of rotations, Acta Arith., 87, 209-217 (1999) · Zbl 0921.11033
[5] Higher dimensional extensions of substitutions and their dual maps, J. Anal. Math., 83, 183-206 (2001) · Zbl 0987.11013 · doi:10.1007/BF02790261
[6] Représentation géométrique de suites de complexité \(2n+1\), Bull. Soc. Math. France, 119, 199-215 (1991) · Zbl 0789.28011
[7] Tracé de droites, fractions continues et morphismes itérés, Mots, Lang. Raison. Calc., 298-309 (1990)
[8] Recent results in Sturmian words, Developments in Language Theory II, 13-24 (1996) · Zbl 1096.68689
[9] Chapter 2: Sturmian words in M. Lothaire, Algebraic Combinatorics on Words
[10] Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences, Discrete Math., 223, 27-53 (2000) · Zbl 0970.68124 · doi:10.1016/S0012-365X(00)00039-X
[11] Suites doubles de basse complexité, J. Th. Nombres Bordeaux, 12, 179-208 (2000) · Zbl 1018.37010 · doi:10.5802/jtnb.274
[12] Palindromes and two-dimensional Sturmian sequences, J. Auto. Lang. Comp., 6, 121-138 (2001) · Zbl 1002.11026
[13] Multi-dimensional continued fraction algorithms, 145 (1981) · Zbl 0471.10024
[14] Fractions continues multidimensionnelles et lois stables, Bull. Soc. Math. France, 124, 97-139 (1999) · Zbl 0857.11035
[15] Exposants caratéristiques de l’algorithme de Jacobi-Perron et la transformation associée, Ann. Inst. Fourier, 51, 3, 565-686 (2001) · Zbl 1012.11060 · doi:10.5802/aif.1832
[16] Descriptions of the characteristic sequence of an irrational, Canad. Math. Bull., 36, 15-21 (1993) · Zbl 0804.11021 · doi:10.4153/CMB-1993-003-6
[17] Geometric representations of primitive substitutions of Pisot type · Zbl 1142.37302
[18] Quaquaversal tilings and rotations, Inventiones Math., 132, 179-188 (1998) · Zbl 0913.52009 · doi:10.1007/s002220050221
[19] A characterization of substitutive sequences using return words, Discrete Math., 179, 89-101 (1998) · Zbl 0895.68087 · doi:10.1016/S0012-365X(97)00029-0
[20] Sur la topologie d’un plan arithmétique, Th. Comput. Sci., 156, 159-176 (1996) · Zbl 0871.68165 · doi:10.1016/0304-3975(95)00059-3
[21] Two-dimensional Languages, Handbook of Formal languages, vol. 3 (1997)
[22] Matching rules and substitution tilings, Annals of Math., 147, 181-223 (1998) · Zbl 0941.52018 · doi:10.2307/120988
[23] On Rauzy fractal, Japan J. Indust. Appl. Math., 8, 461-486 (1991) · Zbl 0734.28010 · doi:10.1007/BF03167147
[24] Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math., 16, 441-472 (1993) · Zbl 0805.11056 · doi:10.3836/tjm/1270128497
[25] Parallelogram tilings and Jacobi-Perron algorithm, Tokyo J. Math., 17, 33-58 (1994) · Zbl 0805.52011 · doi:10.3836/tjm/1270128186
[26] Approximations in ergodic theory, Usp. Math. Nauk. (in Russian), 22, 81-106 (1967) · Zbl 0172.07202
[27] Approximations in ergodic theory, Russian Math. Surveys, 22, 76-102 (1967) · Zbl 0172.07202
[28] Propriétés arithmétiques et dynamiques du fractal de Rauzy, J. Th. Nombres Bordeaux, 10, 135-162 (1998) · Zbl 0918.11048 · doi:10.5802/jtnb.223
[29] Frontière du fractal de Rauzy et système de numération complexe, Acta Arith., 95, 195-224 (2000) · Zbl 0968.28005
[30] Symbolic dynamics II: Sturmian trajectories, Amer. J. Math., 62, 1-42 (1940) · JFM 66.0188.03 · doi:10.2307/2371431
[31] Towards a characterization of self-similar tilings in terms of derived Voronoï tessellations, Geom. Dedicata, 79, 239-265 (2000) · Zbl 1048.37014 · doi:10.1023/A:1005191014127
[32] Substitution dynamical systems, Spectral analysis, 1294 (1987) · Zbl 0642.28013
[33] Space tilings and substitutions, Geom. Dedicata, 55, 257-264 (1995) · Zbl 0835.52018 · doi:10.1007/BF01266317
[34] Miles of tiles, Vol. 1 (1999) · Zbl 0932.52005
[35] A homeomorphism invariant for substitution tiling spaces · Zbl 0997.37006
[36] Nombres algébriques et substitutions, Bull. Soc. Math. France, 110, 147-178 (1982) · Zbl 0522.10032
[37] Combinatorial pieces in digital lines and planes, Vision geometry IV (San Diego, CA, 1995), 2573, 23-24
[38] Suites automatiques à multi-indices, Sém. Th. Nombres Bordeaux, exp. no 4 (19861987) · Zbl 0653.10049
[39] Suites automatiques à multi-indices et algébricité, C. R. Acad. Sci. Paris, Sér. I Math., 305, 501-504 (1987) · Zbl 0628.10007
[40] Quasicrystals and geometry (1995) · Zbl 0828.52007
[41] The metrical theory of Jacobi-Perron algorithm, 334 (1973) · Zbl 0287.10041
[42] Geometric study of the set \({\Bbb Z}_\beta\) of beta-integers with \(\beta\) a Perron number, a \(\beta \)-number and a Pisot number and mathematical quasicrystals (2000)
[43] Combinatoire des motifs d’une suite sturmienne bidimensionnelle, Th. Comput. Sci., 209, 261-285 (1998) · Zbl 0913.68206 · doi:10.1016/S0304-3975(97)00117-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.