zbMATH — the first resource for mathematics

Linear forms in multiple zeta values and multiple integrals. (Formes linéaires en polyzêtas et intégrales multiples.) (French) Zbl 1017.11048
R. Apéry’s proof of the irrationality of \(\zeta(3)\) [Astérisque 61, 11-13 (1979; Zbl 0401.10049)] has given fresh impetus to explorations of linear relations between the numbers \(\zeta(n)\). The author compares three families of \(n\)-dimensional integrals, of which one is \[ L({\mathbf p})=L(a_1,\ldots,a_n,b_1,\ldots,b_n,c_2,\ldots,c_n)= \int_{[0,1]^n} {\prod_{k=1}^n x_k^{a_k}(1-x_k)^{b_k}\over \prod_{k=2}^n\delta_k({\mathbf x})^{c_k}}{dx_1\ldots dx_n\over\delta_n({\mathbf x})} \] where \(\delta_k(x_1,\ldots,x_n)=1-x_k\delta_{k-1}(x_1,\ldots,x_n)\). These integrals generalise the integrals found by F. Beukers [Bull. Lond. Math. Soc. 11, 268-272 (1979; Zbl 0421.10023)] and V. N. Sorokin [Mosc. Univ. Math. Bull. 53, No. 1, 53-56 (1983); translation from Vestn. Mosk. Univ., Ser. I 1983, No. 1, 44-47 (1983; Zbl 0508.41014)] in their proofs of the irrationality of \(\zeta(3)\) and the \(n\)-dimensional integrals of D. V. Vasilev [Dokl. NAN Belarusi 45, No. 5, 36-40 (2001)]. He then shows that these integrals have the invariance properties discovered by G. Rhin and C. Viola in their work on \(\zeta(3)\) [Acta Arith. 97, 269-293 (2001; Zbl 1004.11042)]. That is, he describes an explicit group of transformations \(G\) of order 32 such that \(L(g{\mathbf p})/L({\mathbf p})\) is rational for \(g\) in \(G\). For some special choices of the parameters, he finds richer group structures.

11M41 Other Dirichlet series and zeta functions
11J72 Irrationality; linear independence over a field
11G55 Polylogarithms and relations with \(K\)-theory
Full Text: DOI
[1] Apéry, R., Irrationalité de ζ(2) et ζ(3), Astérisque, 61, 11-13, (1979) · Zbl 0401.10049
[2] Beukers, F., A note on the irrationality of ζ(2) and ζ(3), Bull. London math. soc., 11, 3, 268-272, (1979) · Zbl 0421.10023
[3] S. Fischler, Groupes de Rhin-Viola et intégrales multiples, J. Théor. Nombres Bordeaux, soumis · Zbl 1074.11040
[4] Kontsevich, M.; Zagier, D., Periods, (), 771-808 · Zbl 1039.11002
[5] Rhin, G.; Viola, C., On a permutation group related to ζ(2), Acta arith., 77, 1, 23-56, (1996) · Zbl 0864.11037
[6] Rhin, G.; Viola, C., The group structure for ζ(3), Acta arith., 97, 3, 269-293, (2001) · Zbl 1004.11042
[7] Sorokin, V.N., A transcendence measure for π2, Sb. math., 187, 12, 1819-1852, (1996) · Zbl 0876.11035
[8] Sorokin, V.N., Apéry’s theorem, Moscow univ. math. bull., 53, 3, 48-52, (1998) · Zbl 1061.11501
[9] Vasilyev, D.V., Some formulas for Riemann zeta-function at integer points, Moscow univ. math. bull., 51, 1, 41-43, (1996)
[10] Vasilyev, D.V., On small linear forms for the values of the Riemann zeta-function at odd integers, Doklady NAN belarusi (reports of the belarus national Academy of sciences), 45, 5, 36-40, (2001), (en russe)
[11] Waldschmidt, M., Valeurs zêta multiples : une introduction, J. théor. nombres Bordeaux, 12, 2, 581-595, (2000) · Zbl 0976.11037
[12] Zlobin, S., Integrals represented as linear forms in generalized polylogarithms, Mat. zametki, 71, 5, 782-787, (2002), (en russe)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.