Shin, K. C. On the reality of the eigenvalues for a class of \(\mathcal{PT}\)-symmetric oscillators. (English) Zbl 1017.34083 Commun. Math. Phys. 229, No. 3, 543-564 (2002). Here, the author studies the eigenvalue problem for the equation \[ -u''(z)-[(iz)^{m}+P(iz)]u(z) = \lambda u(z) \] with the boundary conditions that \(u(z)\) decays to zero as \(z\) tends to infinity along the rays \(\arg z = -\frac{\pi}{2} \pm \frac{2\pi}{m+2}\), where \(P(z) = a_{1}z^{m-1}+a_{2}z^{m-2}+...+a_{m-1}z\) is a real polynomial and \(m\geq 2\). It is proved that, if for some \(1\leq j\leq\frac{m}{2}\) one has \((j-k)a_{k}\geq 0\) for all \(1\leq k\leq m-1\), then the eigenvalues are all positive real. Reviewer: Nikolay Vasilye Grigorenko (Kyïv) Cited in 1 ReviewCited in 33 Documents MSC: 34L20 Asymptotic distribution of eigenvalues, asymptotic theory of eigenfunctions for ordinary differential operators 81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis 34M45 Ordinary differential equations on complex manifolds Keywords:eigenvalues; \({\mathcal P}{\mathcal T}\)-symmetric oscillators PDF BibTeX XML Cite \textit{K. C. Shin}, Commun. Math. Phys. 229, No. 3, 543--564 (2002; Zbl 1017.34083) Full Text: DOI arXiv