zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the role of abnormal minimizers in sub-Riemannian geometry. (English) Zbl 1017.53034
Let ${\cal U}$ be an open set of bounded measurable mappings $u$ defined on $[0,T]$ and taking their values in $\bbfR^n$. Consider the optimal control problem: minimize the value $\int^T_0\Sigma u_i(t)dt$ for $u\in{\cal U}$, subject to the constraints: $\dot q(t)=\sum^m_{i=1} u_i(t)F_i(q(t))$, $q\in U$, where $\{F_1,\dots,F_m)$ are $m$ linearly independent vector fields generating a distribution $D$ in an open set $U$ in $\bbfR^n$. The length of a curve $q$ of the above equation on $[0,T]$ and associated to $u\in U$ is given by $L(q)=\int^T_0 (\sum^m_{i=1} u_i^2(t))^{1/2}dt$. We can consider a sub-Riemannian (SR) manifold $(U,D,g)$, where $g$ is defined on $D$ by taking the $F_i$’s as orthonormal vector fields on $U$. The SR-distance between $q_0,q_1\in U$ is the minimum of the length of the curves $q$ joining $q_0$ to $q_i$ and the sphere $S(q_0,r)$ with radius $r$ is defined. The authors give a geometric framework to analyse the singularities of the sphere in the abnormal directions and compute asymptotics of the distance in those directions, mainly in the Martinet case. After recalling the Hamiltonian formalism and the generalities concerning SR geometry the authors analyse the role of abnormal geodesics in SR Martinet geometry and study to which category the sphere belongs. Finally after defining the Martinet sector, the authors describe a Martinet sector in the $n$-dimensional SR-sphere using the computations in the previous sections by means of the Hamiltonian formalism and microlocal analysis.

MSC:
53C17Sub-Riemannian geometry
49J15Optimal control problems with ODE (existence)
WorldCat.org
Full Text: DOI Numdam EuDML
References:
[1] Agrachev ( A. ). - Compactness for sub-Riemannian length minimizers and subanalyticity , Rend. Semin. Mat. Torino , Vol. 56 , 1999 . MR 1845741 | Zbl 1039.53038 · Zbl 1039.53038
[2] Agrachev ( A. ), Bonnard ( B. ), Chyba ( M. ), Kupka ( I. ). - Sub-Riemannian sphere in the Martinet flat case , ESAIM/COCV , Vol. 2 , 377 - 448 , 1997 . Numdam | MR 1483765 | Zbl 0902.53033 · Zbl 0902.53033 · doi:10.1051/cocv:1997114 · http://www.edpsciences.org/articles/cocv/abs/1998/01/cocvEng-Vol2.15.html · eudml:90514
[3] Agrachev ( A. ), El Alaoui , Gauthier ( J.P. ). - Sub-Riemannian metrics on R3 , Canadian Math. Cont. Proc. , Vol. 25 , 29 - 76 , 1998 . MR 1648710 | Zbl 0962.53022 · Zbl 0962.53022
[4] Agrachev ( A. ), El Alaoui , Gauthier ( J.P. ), Kupka ( I. ). - Generic singularities of sub-Riemannian on IR,3 , C.R.A.S. , Paris , 377 - 384 , 1996 . MR 1378516 | Zbl 0843.53025 · Zbl 0843.53025
[5] Agrachev ( A. ), Sarychev ( A. ). - On abnormal extremals for Lagrange variational problems , J. Math. Systems, Estimation and Control , Vol. 8 , No. 1 , 1998 , 87 - 118 . MR 1486492 | Zbl 0826.49012 · Zbl 0826.49012
[6] Agrachev ( A. ), Sarychev ( A. ). - Strong minimality of abnormal geodesics for 2-distributions in SR-geometry , J. of Dynamical and Control Systems , Vol. 1 , No. 2 , 139 - 176 , 1995 . MR 1333769 | Zbl 0951.53029 · Zbl 0951.53029 · doi:10.1007/BF02254637
[7] Bellaïche ( A. ), Risler ( J.J. ) (Editors). - Sub-Riemannian geometry , Birkhäuser , 1996 , Progress in Mathematics , Vol. 144 . MR 1421821 | Zbl 0848.00020 · Zbl 0848.00020
[8] Bliss ( G.A. ). - , Lectures on the calculus of variations , University of Chicago Press , Chicago , 1946 . MR 17881 | Zbl 0063.00459 · Zbl 0063.00459
[9] Bonnard ( B. ). - Feedback equivalence for nonlinear systems and the time optimal control problem , SIAM J. on control and optimization , 29 , 1300 - 1321 , 1991 . MR 1132184 | Zbl 0744.93033 · Zbl 0744.93033 · doi:10.1137/0329067
[10] Bonnard ( B. ), Chyba ( M. ). - Méthodes géométriques et analytiques pour étudier l’application exponentielle, la sphère et le front d’onde en géométrie SR dans le cas Martinet , ESAIM/COCV , Vol. 4 , 245 - 334 , 1999 . Numdam | MR 1696290 | Zbl 0929.53016 · Zbl 0929.53016 · doi:10.1051/cocv:1999111 · http://www.edpsciences.org/articles/cocv/abs/1999/01/cocvVol4-11/cocvVol4-11.htm · eudml:90542
[11] Bonnard ( B. ), Heutte ( H. ). - La propriété de stricte anormalité est générique , Preprint Labo. de Topologie Dijon , 1995 .
[12] Bonnard ( B. ), Kupka ( I. ). - Théorie des singularités et optimalité des trajectoires singulières dans le problème du temps minimal , Forum Math. 5 , 111 - 159 , 1991 . Article | MR 1205250 | Zbl 0779.49025 · Zbl 0779.49025 · doi:10.1515/form.1993.5.111 · eudml:141702
[13] Bonnard ( B. ), Kupka ( I. ). - Generic properties of singular trajectories , Annales de l’IHP, Analyse non linéaire , Vol. 14 , No. 2 , 167 - 186 , 1997 . Numdam | MR 1441391 | Zbl 0907.93020 · Zbl 0907.93020 · doi:10.1016/S0294-1449(97)80143-6 · numdam:AIHPC_1997__14_2_167_0 · eudml:78407
[14] Bonnard ( B. ), Launay ( G. ), Trélat ( E. ). - The transcendence we need to compute the sphere and wave front in Martinet SR-geometry , Contemporary Mathematics and its Applications , Vol. 64 , VINITI , Moscow , 1999 , pp 82 - 117 . English version in Journal of Mathematical Sciences ( Kluwer ), Vol. 103 ( 6 ), 2001 , pp 688 - 708 . MR 1871126 | Zbl 0999.58007 · Zbl 0999.58007
[15] Bruno ( A.D. ). - Local methods in nonlinear differential equations , Springer Verlag , 1989 . MR 993771 | Zbl 0674.34002 · Zbl 0674.34002
[16] Chaperon ( M. ). - Géométrie différentielle et singularités des systèmes dynamiques , Astérisque 138 -139, SMF , 1986 . MR 858911 | Zbl 0601.58002 · Zbl 0601.58002
[17] Chyba ( M. ). - Le cas Martinet en géométrie sous-Riemannienne , Thèse de l’Université de Bourgogne , 1997 .
[18] Davis ( H. ). - Introduction to nonlinear differential and integral equations , Dover , 1962 . MR 181773 | Zbl 0106.28904 · Zbl 0106.28904
[19] Van Den Dries ( L. ), Macintyre ( A. ), Marker ( D. ). - The elementary theory of restricted analytic fields with exponentiation , Annals of Mathematics , 140 , 183 - 205 , 1994 . MR 1289495 | Zbl 0837.12006 · Zbl 0837.12006 · doi:10.2307/2118545
[20] Van Den Dries ( L. ), Miller ( C. ). - Geometric categories and o-minimal structures , Duke Math. Journal , Vol. 84 , No. 2 , 1996 . Article | MR 1404337 | Zbl 0889.03025 · Zbl 0889.03025 · doi:10.1215/S0012-7094-96-08416-1 · http://minidml.mathdoc.fr/cgi-bin/location?id=00008173
[21] Heutte ( H. ). - Propriétés génériques des extrémales singulières dans le cas multi-entrée , Preprint Labo. de Topologie Dijon , 1995 .
[22] IL’YASHENKO ( Yu.S. ). - Finiteness theorems for limit cycles , Translations of Mathematical Monographs , Vol. 94 , 1991 . MR 1133882 | Zbl 0743.34036 · Zbl 0743.34036
[23] Krener ( A.J. ). - The higher order maximal principle and its applications to singular extremals , SIAM J. on Control and Opt. , Vol. 15 , 256 - 293 , 1977 . MR 433288 | Zbl 0354.49008 · Zbl 0354.49008 · doi:10.1137/0315019
[24] Kupka ( I. ). - Abnormal extremals , Preprint, 1992 .
[25] Kupka ( I. ). - Géométrie sous-Riemannienne , Séminaire Bourbaki, 1996 . Numdam | MR 1472545 | Zbl 0893.53013 · Zbl 0893.53013 · numdam:SB_1995-1996__38__351_0 · eudml:110220
[26] Lawden ( D.F. ). - , Elliptic functions and applications , Springer Verlag , 1980 . MR 1007595 | Zbl 0689.33001 · Zbl 0689.33001
[27] Lee ( E.B. ), Markus ( L. ). - Foundations of optimal control theory , John Wiley , New York , 1967 . MR 220537 | Zbl 0159.13201 · Zbl 0159.13201
[28] Lion ( J.M. ), Rolin ( J.P. ). - Théorèmes de préparation pour les fonctions logarithmico-exponentielles , Annales de l’Institut Fourier , Tome 47 , Fasc. 3 , 859 - 884 , 1997 . Numdam | MR 1465789 | Zbl 0873.32004 · Zbl 0873.32004 · doi:10.5802/aif.1583 · numdam:AIF_1997__47_3_859_0 · eudml:75247
[29] Liu ( W.S. ), Sussmann ( H.J. ). - Shortest paths for sub-Riemannian metrics of rank two distributions , Memoirs AMS , No. 564 , Vol. 118 , 1995 . MR 1303093 | Zbl 0843.53038 · Zbl 0843.53038
[30] Lojasiewicz ( S. ), Sussmann ( H.J. ). - Some examples of reachable sets and optimal cost functions that fail to be subanalytic , SIAM J. on Control and Opt. , Vol. 23 , No. 4 , 584 - 598 , 1985 . MR 791889 | Zbl 0569.49029 · Zbl 0569.49029 · doi:10.1137/0323037
[31] Love ( A.E.H. ). - A treatise of the mathematica theory of elasticity , Dover , 1944 . MR 10851 | Zbl 0063.03651 · Zbl 0063.03651
[32] Mischenko ( A.S. ) and al. - Lagrangian manifolds and the Maslov operator , Springer Verlag , New York , 1980 .
[33] Montgomery ( R. ). - Abnormal minimizers , SIAM J. on Control and Opt. , Vol. 32 , No. 6 , 1605 - 1620 , 1997 . MR 1297101 | Zbl 0816.49019 · Zbl 0816.49019 · doi:10.1137/S0363012993244945
[34] Mourtada ( A. ), Moussu ( R. ). - Applications de Dulac et applications pfaffiennes , Bulletin SMF , 125 , 1 - 13 , 1997 . Numdam | MR 1459296 | Zbl 0884.58004 · Zbl 0884.58004 · http://smf.emath.fr/Publications/Bulletin/125/html/smf_bull_125_1-13.html · numdam:BSMF_1997__125_1_1_0 · eudml:87757
[35] Moussu ( R. ), Roche ( A. ). - Théorie de Khovanski et problème de Dulac , Inv. Math. , 105 , 431 - 441 , 1991 . MR 1115550 | Zbl 0769.58050 · Zbl 0769.58050 · doi:10.1007/BF01232274 · eudml:143920
[36] Pelletier ( M. ). - Communication personnelle .
[37] Pontriaguine ( L. ) et al. - Théorie mathématique des processus optimaux , Eds Mir , Moscou , 1974 . MR 358482 | Zbl 0289.49002 · Zbl 0289.49002
[38] Roussarie ( R. ). - Bifurcations of planar vector fields and Hilbert’s 16th problem , Birkhäuser , Berlin , 1998 . Zbl 0898.58039 · Zbl 0898.58039
[39] Sachkov ( Y.L. ). - Symmetries of flat rank two distributions and sub-Riemannian structures , Preprint Labo. de Topologie Dijon , 1998 . MR 2022707 · Zbl 1038.53030
[40] Trélat ( E. ). - Some properties of the value function and its level sets for affine control systems with quadratic cost , Journal of Dynamical and Control Systems , Vol. 6 , No. 4 , Oct. 2000 , 511 - 541 . arXiv | MR 1778212 | Zbl 0964.49021 · Zbl 0964.49021 · doi:10.1023/A:1009552511132 · http://minidml.mathdoc.fr/cgi-bin/location?id=00109196
[41] Trélat ( E. ). - Etude asymptotique et transcendance de la fonction valeur en contrôle optimal ; catégorie log-exp dans le cas sous-Riemannien de Martinet . Phd Thesis, Université de Bourgogne , Dijon , 2000 .
[42] Trélat ( E. ). - Asymptotics of accessibility sets along an abnormal trajectory , ESAIM/COCV , Vol. 6 , 387 - 414 , 2001 . Numdam | MR 1836049 | Zbl 0996.93009 · Zbl 0996.93009 · doi:10.1051/cocv:2001115 · numdam:COCV_2001__6__387_0 · eudml:90599
[43] Trélat ( E. ). - Non subanalyticity of sub-Riemannian Martinet spheres , CRAS , t. 332 , Série I , 527 - 532 , 2001 . MR 1834063 | Zbl 0999.53026 · Zbl 0999.53026 · doi:10.1016/S0764-4442(01)01882-1
[44] Zelenko ( I. ), Zhitomirski ( M. ). - Rigid paths of generic 2-distributions on 3-manifolds , Duke Math. Journal , Vol. 79 , No. 2 , 281 - 307 , 1995 . Article | MR 1344763 | Zbl 0867.57022 · Zbl 0867.57022 · doi:10.1215/S0012-7094-95-07907-1 · http://minidml.mathdoc.fr/cgi-bin/location?id=00008287
[45] Zhitomirski ( M. ). - Typical singularities of differential 1-forms and pfaffian equations , Trans. of Math. Monographs , Vol. 113 , AMS , 1992 . MR 1195792 | Zbl 0771.58001 · Zbl 0771.58001