On uniqueness of solutions for the stochastic differential equations of nonlinear filtering. (English) Zbl 1017.60048

The authors study the uniqueness for the stochastic differential equations of nonlinear filtering from a point of view similar to that of J. Szpirglas [Ann. Inst. Henri Poincaré, n. Sér., Sect. B 14, 33-59 (1978; Zbl 0374.60055)], but for a nonlinear filtering problem in which there is dependence of the signal on the observations.


60G35 Signal detection and filtering (aspects of stochastic processes)
60G44 Martingales with continuous parameter


Zbl 0374.60055
Full Text: DOI


[1] Bhatt, A. G., Kallianpur, G. and Karandikar, R. L. (1995). Uniqueness and robustness of solution of measure-valued equations of nonlinear filtering. Ann. Probab. 23 1895- 1938. · Zbl 0861.60051
[2] Bhatt, A. G. and Karandikar, R. L. (1995). Evolution equations for Markov processes: application to the white-noise theory of filtering. Appl. Math. Optim. 31 327-348. · Zbl 0824.60075
[3] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York. · Zbl 0592.60049
[4] Ikeda, N. and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam. · Zbl 0684.60040
[5] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus. Springer, New York. · Zbl 0734.60060
[6] Kunita, H. (1971). Asymptotic behavior of the nonlinear filtering errors of Markov processes. J. Multivariate Anal. 1 365-393. · Zbl 0245.93027
[7] Kunita, H. (1981). Stochastic partial differential equations connected with nonlinear filtering. Lecture Notes in Math. 972 100-169. Springer, Berlin. · Zbl 0527.60067
[8] Kunita, H. (1990). Stochastic Flows and Stochastic Differential Equations. Cambridge Univ. Press. · Zbl 0743.60052
[9] Kurtz, T. G. (1998). Martingale problems for conditional distributions of Markov processes. Electron J. Probab. 3 1-29. · Zbl 0907.60065
[10] Kurtz, T. G. and Ocone, D. L. (1988). Unique characterization of conditional distributions in nonlinear filtering. Ann. Probab. 16 80-107. · Zbl 0655.60035
[11] Kurtz, T. G. and Stockbridge, R. H. (1988). Existence of Markov controls and characterization of optimal Markov controls. SIAM J. Control Optim. 36 609-653. · Zbl 0935.93064
[12] Revuz, D. and Yor, M. (1994). Continuous Martingales and Brownian Motion. Springer, New York. · Zbl 0804.60001
[13] Rogers, L. C. G. and Williams, D. (1987). Diffusions, Markov Processes and Martingales 2: It o Calculus. Wiley, New York. · Zbl 0977.60005
[14] Rozovskii, B. L. (1991). A simple proof of uniqueness for Kushner and Zakai equations. In Stochastic Analysis (E. Mayer-Wolf, E. Merzbach and A. Schwartz, eds.) 449-458. Academic Press, New York. · Zbl 0732.60055
[15] Szpirglas, J. (1998). Sur l’équivalence d’équations différentielles stochastiques á valeurs mesures intervenant dans le filtrage markovien non linéaire. Ann. Inst. H. Poincaré Probab. Statist. 14 33-59. · Zbl 0374.60055
[16] Yamada, T. and Watanabe, S. (1971). On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11 155-167. · Zbl 0236.60037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.