Nonlinear martingale theory for processes with values in metric spaces of nonpositive curvature. (English) Zbl 1017.60050

The goal of the paper is to extend the classical linear martingale theory towards discrete time processes with values in a metric space \((N,d)\) with nonpositive curvature (NPC space). This leads to a stochastic approach to harmonic maps, the nonlinear heat flow and the Dirichlet problem. The paper begins with an introduction to NPC spaces and the associated spaces \(L^r\) of random variables \(Y\): \((\Omega,\mathcal{F},P) \rightarrow (N,d)\) with \(r\)th moments, \(r \in [1,\infty]\). Given a sub-\(\sigma\)-field \({\mathcal G}\) of \(\mathcal{F}\), the nonpositive curvature of \((N,d)\) allows the definition of the conditional expectation \(E(Y|\mathcal{G})\) as the unique \(\mathcal{G}\)-measurable random variable with minimal \(L^2\)-distance to \(Y\), i.e. the barycenter of \(Y\). Using geodesics to define convex combinations of \(N\)-valued random variables, a weak and a strong law of large numbers are proved. The tower property does in general not hold for the introduced conditional expectation. In order to remedy this defect the concept of filtered conditional expectations is introduced, and the Jensen inequality for conditional and filtered conditional expectations are proved. Discrete time \(N\)-valued martingales and associated bracket processes are introduced, and several properties are proved. Among them are an optional stopping and martingale convergence theorem. Finally, nonlinear Markov properties are proved, and the connection between the associated harmonic maps and nonlinear heat flows and the martingale property are discussed. These considerations are then extended to the Dirichlet problem, which is uniquely solved using the filtered conditional expectation.


60G42 Martingales with discrete parameter
58E20 Harmonic maps, etc.
60J05 Discrete-time Markov processes on general state spaces
60J45 Probabilistic potential theory
31C25 Dirichlet forms
Full Text: DOI


[1] BALLMANN, W. (1995). Lectures on Spaces of Nonpositive Curvature. Birkhäuser, Berlin. · Zbl 0834.53003
[2] CARTAN, H. (1928). Leçons sur la géometrie des espaces de Riemann. Gauthiers-Villars, Paris.
[3] DOSS, S. (1949). Sur la moy enne d’un élément aléatoire dans un espace distancié. Bull. Sci. Math. 73 48-72. · Zbl 0033.28902
[4] EELLS, J. and FUGLEDE, B. (2001). Harmonic Maps between Riemannian Poly hedra. Cambridge Univ. Press. · Zbl 0979.31001
[5] EMERY, D. (1989). Stochastic Calculus on Manifolds. Springer, New York. · Zbl 0697.60060
[6] EMERY, D. and MOKOBODZKI, G. (1991). Sur le bary centre d’une probabilité dans une variété. Séminaire de Probabilités XXV. Lecture Notes in Math. 1485 220-233. Springer, Berlin. · Zbl 0753.60046
[7] ES-SAHIB, A. and HEINICH, H. (1999). Bary centres canoniques pour un espace métrique à courbure négative. Seminaire de Probabilités XXXIII. Lecture Notes in Math. 1709 355-370. Springer, Berlin. · Zbl 0952.60010
[8] FRÉCHET, M. (1948). Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré 10 215-310. · Zbl 0035.20802
[9] GAUSS, C. F. (1809). Theoria Motus Corporum Celestium.
[10] HERER, W. (1991). Espérance mathématique au sens de Doss d’une variable aléatoire dans un espace métrique. C. R. Acad. Sci. Paris Sér. I 302 131-134. · Zbl 0609.60002
[11] JOST, J. (1994). Equilibrium maps between metric spaces. Calc. Var. Partial Differential Equations 2 173-204. · Zbl 0798.58021
[12] JOST, J. (1997). Nonpositive curvature: geometric and analytic aspects. Lectures Math. ETH Zürich. Birkhäuser, Basel. · Zbl 0896.53002
[13] KENDALL, W. (1990). Probability, convexity, and harmonic maps with small images I. Uniqueness and fine existence. Proc. London Math. Soc. 61 371-406. · Zbl 0675.58042
[14] KOREVAAR, N. and SCHOEN, R. (1993). Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom. 1 561-569. · Zbl 0862.58004
[15] PICARD, J. (1994). Bary centres et martingales sur une variété. Ann. Inst. H. Poincaré 30 647-702. · Zbl 0817.58047
[16] STURM, K. T. (2001a). Nonlinear Markov operators, discrete heat flow, and harmonic maps between singular spaces. Potential Anal. · Zbl 1049.31010
[17] STURM, K. T. (2001b) Nonlinear Markov operators associated with sy mmetric Markov kernels and energy minimizing maps between singular spaces. Calc. Var. Partial Differential Equations 12 317-357. · Zbl 0987.31006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.