×

Strict positivity of the density for simple jump processes using the tools of support theorems. Application to the Kac equation without cutoff. (English) Zbl 1017.60063

The author establishes a support theorem for a nonlinear jump process having an infinite number of jumps. By using tools of Malliavin calculus for jump processes, he gets a lower bound of the law of the solution of a Kac equation by measure having a strictly positive density with respect to the Lebesgue measure.
Reviewer: R.Leandre

MSC:

60H07 Stochastic calculus of variations and the Malliavin calculus
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60J75 Jump processes (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] AIDA, S., KUSUOKA, S. and STROOCK, D. (1993). On the support of Wiener functionals. In Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics (K. D. Elworthy and N. Ikeda, eds.) 3-34. Longman, New York. · Zbl 0790.60047
[2] BALLY, V. and PARDOUX, E. (1998). Malliavin Calculus for white noise driven SPDEs. Potential Anal. 9 27-64. · Zbl 0928.60040
[3] BEN AROUS, G. and LÉANDRE, R. (1991). Décroissance exponantielle du noyau de la chaleur sur la diagonale (II). Probab. Theory Related Fields 90 377-402. · Zbl 0734.60027
[4] BICHTELER, K., GRAVEREAUX, J. B. and JACOD, J. (1987). Malliavin Calculus for Processes with Jumps. Gordon and Breach, New York. · Zbl 0706.60057
[5] BICHTELER, K. and JACOD, J. (1983). Calcul de Malliavin pour les diffusions avec sauts, existence d’une densité dans le cas unidimensionel. Séminaire de Probabilités XVII. Lecture Notes in Math. 986 132-157. Springer, New York. · Zbl 0525.60067
[6] DESVILLETTES, L., GRAHAM, C. and MÉLÉARD, S. (1999). Probabilistic interpretation and numerical approximation of a Kac equation without cutoff. Stochastic Process. Appl. 84 115-135. · Zbl 1009.76081
[7] ETHIER, S. and KURTZ, T. (1986). Markov Processes: Characterization and Convergence. Wiley, New York. · Zbl 0592.60049
[8] FOURNIER, N. (1999). Strict positivity of the density for Poisson driven S.D.E.s. Stochastics 68 1-43. · Zbl 0944.60066
[9] FOURNIER, N. (2000). Existence and regularity study for a 2-dimensional Kac equation without cutoff by a probabilistic approach. Ann. Appl. Probab. 10 434-462. · Zbl 1056.60052
[10] FOURNIER, N. (2000). Strict positivity of a solution to a one-dimensional Kac equation without cutoff. J. Statist. Phys. 99 725-749. · Zbl 0959.82020
[11] FOURNIER, N. (2000). Strict positivity of the solution to a 2-dimensional Boltzmann equation without cutoff. Ann. Inst. H. Poincaré Probab. Statist. 37 481-502. · Zbl 0981.60056
[12] FOURNIER, N. (2000). Support theorem for the solution of a white noise driven parabolic S.P.D.E.s with temporal poissonian jumps. Bernoulli 7 165-190. · Zbl 0980.60090
[13] GRAHAM, C. and MÉLÉARD, S. (1999). Existence and regularity of a solution to a Kac equation without cutoff using Malliavin Calculus. Comm. Math. Phys. 205 551-569. · Zbl 0953.60057
[14] ISHIKAWA, Y. (1994). Asymptotic behaviour of the transition density for jump type processes in small time. Tohoku Math. J. 46 443-456. · Zbl 0818.60074
[15] JACOD, J. (1982). Equations différentielles linéaires, la méthode de variation des constantes. Séminaire de Probabilités XVI. Lecture Notes in Math. 920 442-448. Springer, New York. · Zbl 0479.60063
[16] JACOD, J. and SHIRYAEV, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, New York. · Zbl 0635.60021
[17] LÉANDRE, R. (1987). Densité en temps petit d’un processus de sauts. Séminaire de Probabilités XXI. Lecture Notes in Math. 1247. Springer, New York. · Zbl 0616.60078
[18] LÉANDRE, R. (1990). Strange behaviour of the heat kernel on the diagonal. In Stochastic Processes, Physics and Geometry (S. Albeverio, ed.) 516-528. World Scientific, Singapore.
[19] MILLET, A. and SANZ-SOLLÉ, M. (1997). Points of positive density for the solution to a Hyperbolic S.P.D.E. Potential Anal. 7 623-659. · Zbl 0892.60059
[20] PICARD, J. (1997). Density in small time at accessible points for jump processes. Stochastic Process. Appl. 67 251-279. · Zbl 0889.60088
[21] PULVIRENTI, A. and WENNBERG, B. (1997). A Maxwellian lowerbound for solutions to the Boltzmann equation. Comm. Math. Phys. 183 145-160. · Zbl 0866.76077
[22] SIMON, T. (1998). Support theorem for jump processes. Stochastic Process. Appl. 89 1-30. · Zbl 1045.60063
[23] TANAKA, H. (1978). Probabilistic treatment of the Boltzmann equation of Maxwellian molecules.Warsch. Verw. Gebiete 66 559-592. · Zbl 0389.60079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.