zbMATH — the first resource for mathematics

On a nonlinear stochastic wave equation in the plane: Existence and uniqueness of the solution. (English) Zbl 1017.60072
The authors study the stochastic wave equation with a nonlinearity of polynomial type, \[ {\partial^2u\over\partial t^2} (t,x)-\Delta u(t, x)+|u(t,x)|^p u(t,x= \sigma(u(t,x)) u(t,x), \]
\[ u(0,x)= u_0(x),\qquad{\partial u\over\partial t} (0,x)= v_0(x), \] \(t\in [0,T]\), \(x\in\mathbb{R}^2\), with \(\rho> 0\) and when \(\sigma\) is bounded and \(u_0\) and \(v_0\) have compact suport. \(F\) is a generalized Gaussian noise satisfying certain integrability properties. The authors prove an existence and uniqueness result for this class of stochastic equations. The methods used in the proofs are based on functional analysis and probability tools. The authors use an approximation procedure via regularized versions of the equation. In order to get the results, they have to prove some new regularity properties for the Green function associated with the wave equation.

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35L70 Second-order nonlinear hyperbolic equations
35R60 PDEs with randomness, stochastic partial differential equations
Full Text: DOI
[1] Biswas, S. K. and Ahmed, N. U. (1985). Stabilization ofsystems governed by the wave equation in the presence ofdistributed white noise. IEEE Trans. Automat. Control AC-30 1043-1045. · Zbl 0579.93065
[2] Carmona, R. and Nualart, D. (1998). Random nonlinear wave equations: smoothness ofthe solution. Probab. Theory Related Fields 79 469-508. · Zbl 0635.60073
[3] Dalang, R. (1999). Extending the martingale measure stochastic integrals to spatially homogeneous spde’s. Electronic J. Probab. 4. Available at www.math.washington.edu/ ejpecp/EjpVol4/paper6.abs.html. URL: · Zbl 0986.60053
[4] Dalang, R. and Frangos, N. E. (1998). The stochastic wave equation in two spatial dimensions. Ann. Probab. 26 187-212. · Zbl 0938.60046
[5] Gy öngy, I. (1998). Existence and uniqueness results for semi-linear stochastic partial differential equations. Stochastic Processes Appl. 73 271-299. · Zbl 0942.60058
[6] Krasnosel’skii, M. A. and Rustickii, Ya. B. (1961). Convex Functions and Orlicz Spaces. Noordorff, Groningen.
[7] Lions, J. L. (1969). Quelques méthodes de résolution des probl emes aux limites non linéaires. Gauthier Villars, Dunod. · Zbl 0189.40603
[8] Miller, R. N. (1990). Tropical data assimilation with simulated data: the impact ofthe tropical ocean and global atmosphere thermal array for the ocean. J. Geophysical Res. 95 11,461-11,482.
[9] Millet, A. and Morien, P. L. (2000). A stochastic wave equation in two space dimensions: regularity ofthe solution and its density. Stochastic Processes Appl. 86 141-162. · Zbl 1028.60061
[10] Millet, A. and Sanz-Solé, M. (1999). A stochastic wave equation in two space dimensions: smoothness ofthe law. Ann. Probab. 27 803-844. · Zbl 0944.60067
[11] Mueller, C. (1997). Long-time existence for the wave equation with a noise term. Ann. Probab. 25 133-151. · Zbl 0884.60054
[12] Peszat, S. (1999). The Cauchy problem for a nonlinear stochastic wave equation in any dimension. Unpublished manuscript. · Zbl 1375.60109
[13] Peszat, S. and Zabczyk, J. (1998). Nonlinear stochastic wave and heat equations. Probab. Theory Related Fields 116 421-443. · Zbl 0959.60044
[14] Stroock, D. W. and Varadhan, S. R. S. (1979). Multidimensional Diffusion Processes. Springer, Berlin. · Zbl 0426.60069
[15] Walsh, J. B. (1986). An introduction to stochastic partial differential equations. Ecole d’été de Probabilités de SaintFlour. Lecture Notes in Math. 1180 266-437. Springer, Berlin. · Zbl 0608.60060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.