zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An iterative substructuring method for Maxwell’s equations in two dimensions. (English) Zbl 1017.78008
Summary: Iterative substructuring methods, also known as Schur complement methods, form an important family of domain decomposition algorithms. They are preconditioned conjugate gradient methods where solvers on local subregions and a solver on a coarse mesh are used to construct the preconditioner. For conforming finite element approximations of $H^1$, it is known that the number of conjugate gradient steps required to reduce the residual norm by a fixed factor is independent of the number of substructures, and that it grows only as the logarithm of the dimension of the local problem associated with an individual substructure. In this paper, the same result is established for similar iterative methods for low-order Nédélec finite elements, which approximate $H(\text{curl};\Omega)$ in two dimensions. Results of numerical experiments are also provided.

78M10Finite element methods (optics)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65F10Iterative methods for linear systems
65N55Multigrid methods; domain decomposition (BVP of PDE)
Full Text: DOI