×

Pfaffian and Hafnian identities in shuffle algebras. (English) Zbl 1018.05006

Let \(\mathbb{Z}\langle A\rangle\) be the free associative ring over an alphabet \(A\) with comultiplication which admits the Lie polynomials as primitive elements. The shuffle product is an operation on \(\mathbb{Z}\langle A\rangle\) which is dual to this comultiplication. For a vector space \(\mathcal H\) of integrable functions over an interval \((a,b)\) K.-T. Chen [Proc. Lond. Math. Soc., III. Ser. 4, 502-512 (1954; Zbl 0058.25603) and Ann. Math. (2) 65, 163-178 (1957; Zbl 0077.25301] related the linear form on \({\mathcal H}^{\otimes n}\) \[ \langle f_1\otimes\cdots\otimes f_n\rangle =\int_a^b dx_1\int_a^{x_1} dx_2\;\cdots \int_a^{x_{n-1}} dx_nf_1(x_1)f_2(x_2)\cdots f_n(x_n) \] and expressed the product \(\langle u\rangle\langle v\rangle\) in terms of the shuffle product. This implies that certain identities involving multiple integrals, such as the de Bruijn and Wick formulas, amount to combinatorial identities for Pfaffians and Hafnians in shuffle algebras. In the paper under review the authors provide direct algebraic proofs of such shuffle identities, and obtain various generalizations. They also discuss some Pfaffian identities due to Sundquist and Ishiwara-Wakayama, and a Cauchy formula for anticommutative symmetric functions. They also extend some of the previous considerations to hyper-Pfaffians and hyper-Hafnians.

MSC:

05A19 Combinatorial identities, bijective combinatorics
05E05 Symmetric functions and generalizations
16S10 Associative rings determined by universal properties (free algebras, coproducts, adjunction of inverses, etc.)
16W99 Associative rings and algebras with additional structure

References:

[1] Barvinok, A. I., New algorithms for linear \(k\)-matroid intersection and matroid \(k\)-parity problems, Math. Program., 69, 449-470 (1995) · Zbl 0844.90067
[2] Berezin, F. A., The Method of Second Quantization. The Method of Second Quantization, Pure Appl. Phys., 24 (1966), Academic Press: Academic Press New York · Zbl 0151.44001
[3] Borwein, J. M.; Bradley, D. M.; Broadhurst, D. J.; Lisonek, P., Combinatorial aspects of multiple zeta values, Electron. J. Combin., 5, 1 (1998), Res. Paper 38, 12 pp., electronic · Zbl 0904.05012
[4] de Bruijn, N. G., On some multiple integrals involving determinants, J. Indian Math. Soc. (N.S.), 19, 133-151 (1956) · Zbl 0068.24904
[5] Caianiello, E. R., Combinatorics and Renormalization in Quantum Field Theory. Combinatorics and Renormalization in Quantum Field Theory, Frontiers Phys. (1973), Benjamin: Benjamin Reading, MA · Zbl 0271.94031
[6] Chen, K. T., Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. of Math., 65, 163-178 (1957) · Zbl 0077.25301
[7] Chen, K. T., Iterated integrals and exponential homomorphisms, Proc. London Math. Soc., 4, 502-512 (1953) · Zbl 0058.25603
[8] Gelfand, I. M.; Krob, D.; Lascoux, A.; Leclerc, B.; Retakh, V. S.; Thibon, J.-Y., Noncommutative symmetric functions, Adv. Math., 112, 218-348 (1995) · Zbl 0831.05063
[9] Ishikawa, M.; Wakayama, M., Minor summation formula of Pfaffians, Linear and Multilinear Algebra, 39, 285-305 (1995) · Zbl 0830.15011
[10] Ishikawa, M.; Wakayama, M., Minor summation formula of Pfaffians and Schur function identities, Proc. Japan Acad., 71, A, 54-57 (1995) · Zbl 0840.05099
[11] Ishikawa, M.; Wakayama, M., Minor summation formulas of Pfaffians, survey and a new identity, (Combinatorial Methods in Representation Theory, Kyoto, 1998. Combinatorial Methods in Representation Theory, Kyoto, 1998, Adv. Stud. Pure Math., 28 (2000), Kinokuniya: Kinokuniya Tokyo), 133-142 · Zbl 0980.15006
[12] Knuth, D. E., Overlapping Pfaffians, The Foata Festschrift, Electron. J. Combin., 3, 2 (1996), Res. Paper 5, approximately 13 p., electronic
[13] Mehta, M. L., Random Matrices (1991), Academic Press · Zbl 0594.60067
[14] Reutenauer, C., Free Lie Algebras (1993), Oxford University Press · Zbl 0798.17001
[15] Schur, I., Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math., 139, 155-250 (1911) · JFM 42.0154.02
[16] Stembridge, J., Non-intersecting paths and Pfaffians, Adv. Math., 83, 96-131 (1990) · Zbl 0790.05007
[17] Sundquist, T., Two variable Pfaffian identities and symmetric functions, J. Algebraic Combin., 5, 135-148 (1996) · Zbl 0856.05094
[18] Tracy, C. A.; Widom, H., Correlation functions, cluster functions and spacing distributions for random matrices, J. Stat. Phys., 92, 809-835 (1998) · Zbl 0942.60099
[19] You, Y., On some identities of Schur \(Q\)-functions, J. Algebra, 145, 349-377 (1992) · Zbl 0746.17013
[20] Zagier, D., Values of zeta functions and their applications, (First European Congress of Mathematics, Vol. II (1994), Birkhäuser: Birkhäuser Boston), 497-512 · Zbl 0822.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.