Beck, Matthias; Zaslavsky, Thomas A Meshalkin theorem for projective geometries. (English) Zbl 1018.05100 J. Comb. Theory, Ser. A 102, No. 2, 433-441 (2003). A projective geometry \(\mathbb{P}^{n-1}(q)\) of order \(q\) and rank \(n\) (i.e. dimension \(n-1\)) is viewed as a lattice of flats in which \(\widehat 0=\emptyset\) and \(\widehat 1\) is the set of all points. A Meshalkin sequence of length \(p\) in \(\mathbb{P}^{n-1}(q)\) is a sequence \(a=(a_1,a_2,\dots,a_p)\) of flats whose join is \(\widehat 1\), and whose ranks sum to \(n\). The authors prove upper bounds on the cardinality of a family, \({\mathcal M}\), of Meshalkin sequences, and (from the authors’ abstract) “corresponding LYM inequalities, assuming that (i) all joins are the whole geometry, and, for each \(k<p\), the set of all \(a_k\)’s of sequences in \({\mathcal M}\) contains no chain of length \(\ell\), and that (ii) the joins are arbitrary, and the chain condition holds for all \(k\). These results are \(q\)-analogs of generalizations of L. D. Meshalkin’s [Theor. Probab. Appl. 8, 203-204 (1963); translation from Teor. Veroyatn. Primen. 8, 219-220 (1963; Zbl 0123.36303)] and P. Erdős’s [Bull. Am. Math. Soc. 51, 898-902 (1945; Zbl 0063.01270)] generalizations of Sperner’s theorem and their LYM companions [M. Hochberg and W. M. Hirsch, Ann. N.Y. Acad. Sci. 175, 224-237 (1970; Zbl 0231.05007)], and they generalize G.-C. Rota and L. H. Harper’s \(q\)-analog [Matching theory, an introduction, Advances Probab. related Topics 1, 169-215 (1971; Zbl 0234.05001)] of Erdős’s generalization”. Reviewer: William G.Brown (Montréal) Cited in 3 Documents MSC: 05D05 Extremal set theory 06A07 Combinatorics of partially ordered sets 51E20 Combinatorial structures in finite projective spaces 11B65 Binomial coefficients; factorials; \(q\)-identities Keywords:Sperner’s theorem; Meshalkin’s theorem; LYM inequality; antichain; \(r\)-family; \(r\)-chain free Citations:Zbl 0123.36303; Zbl 0063.01270; Zbl 0231.05007; Zbl 0234.05001 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Anderson, I., Combinatorics of Finite Sets (1987), Clarendon Press: Clarendon Press Oxford, (Corr. repr., Dover, Mineola, NY, 2002) · Zbl 0604.05001 [2] M. Beck, Xueqin Wang, T. Zaslavsky, A unifying generalization of Sperner’s theorem, submitted.; M. Beck, Xueqin Wang, T. Zaslavsky, A unifying generalization of Sperner’s theorem, submitted. · Zbl 1094.05055 [3] Beck, M.; Zaslavsky, T., A shorter, simpler, stronger proof of the Meshalkin-Hochberg-Hirsch bounds on componentwise antichains, J. Combin. Theory Ser. A, 100, 196-199 (2002) · Zbl 1028.05111 [4] Bollobás, B., On generalized graphs, Acta Math. Acad. Sci. Hung., 16, 447-452 (1965) · Zbl 0138.19404 [5] K. Engel, Sperner Theory, Encyclopedia of Mathematics and Its Applications, Vol. 65, Cambridge University Press, Cambridge, 1997.; K. Engel, Sperner Theory, Encyclopedia of Mathematics and Its Applications, Vol. 65, Cambridge University Press, Cambridge, 1997. · Zbl 0868.05001 [6] Erdős, P., On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc., 51, 898-902 (1945) · Zbl 0063.01270 [7] Hochberg, M.; Hirsch, W. M., Sperner families, s-systems, and a theorem of Meshalkin, Ann. New York Acad. Sci., 175, 224-237 (1970) · Zbl 0231.05007 [8] Klain, D. A.; Rota, G.-C., Introduction to Geometric Probability (1997), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0896.60004 [9] Lubell, D., A short proof of Sperner’s theorem, J. Combin. Theory, 1, 209-214 (1966) · Zbl 0151.01503 [10] Meshalkin, L. D., Generalization of Sperner’s theorem on the number of subsets of a finite set, Teor. Verojatnost. Primenen, 8, 219-220 (1963), (in Russian) (English trans., Theor. Probab. Appl. 8 (1963) 203-204) · Zbl 0123.36303 [11] G.-C. Rota, L.H. Harper, Matching theory, an introduction, in: P. Ney (Ed.), Advances in Probability and Related Topics, Vol. 1, Marcel Dekker, New York, 1971, pp. 169-215.; G.-C. Rota, L.H. Harper, Matching theory, an introduction, in: P. Ney (Ed.), Advances in Probability and Related Topics, Vol. 1, Marcel Dekker, New York, 1971, pp. 169-215. · Zbl 0234.05001 [12] Sperner, E., Ein Satz über Untermengen einer endlichen Menge, Math. Z., 27, 544-548 (1928) · JFM 54.0090.06 [13] Yamamoto, K., Logarithmic order of free distributive lattices, J. Math. Soc. Japan, 6, 343-353 (1954) · Zbl 0056.26301 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.