## Frobenius extensions and weak Hopf algebras.(English)Zbl 1018.16020

Let $$M/N$$ be a Frobenius extension of $$k$$-algebras with Frobenius homomorphism $$E$$ and dual bases $$\{x_i\}$$, $$\{y_i\}$$. Let $$U=C_M(N)$$. The extension is called symmetric if $$E$$ commutes with every $$u\in U$$, and Markov if the extension is strongly separable (i.e. $$E(1)=1$$ and $$\sum_ix_iy_i=\lambda^{-1}1$$) and there is a (Markov) trace $$T\colon N\to k$$ such that $$T(1)=1_k$$ and $$T_0=T\circ E\colon M\to k$$ is a trace. The basic construction theorem says that if $$N\subseteq M$$ is a symmetric Markov extension and $$M_1=M\otimes_NM=\text{End}(M_N)$$ then $$M_1/M$$ is a symmetric Markov extension; the Frobenius endomorphism $$E_M$$ and the dual bases are described, and the Markov trace is $$T_0$$. If in addition $$U$$ is Kanzaki separable, $$T_0|_U$$ is non-degenerate and $$\sum_ix_iy_i=\sum_iy_ix_i$$ then $$V=C_{M_1}(M)$$ is Kansaki separable and the restriction of $$T_1=T_0\circ E_M$$ to $$V$$ is non-degenerate. The construction can be iterated to obtain the Jones tower $$N\subseteq M\subseteq M_1\subseteq M_2$$. Let $$A=C_{M_1}(N)$$ and $$B=C_{M_2}(M)$$. Assuming the existence of dual bases for $$E_M$$ resp. $$E_{M_1}$$ in $$A$$ resp. $$B$$ (depth 2 condition) the authors prove some properties of algebra extensions involving $$A$$, $$B$$, $$U$$ and $$V$$. Examples of extensions with depth 2 are provided in the final appendix. Then semisimple weak Hopf algebra structures are defined in $$A$$ and $$B$$, and also $$A$$ resp. $$B$$-module algebra structures on $$M$$ resp. $$M_1$$. Two isomorphisms $$M_1\simeq M\#A$$ and $$M_2\simeq M_1\#B$$ are also provided. Finally, in the absence of a trace, the basic construction is iterated to the right, extending a result of M. Pimsner and S. Popa [Trans. Am. Math. Soc. 310, No. 1, 127-133 (1988; Zbl 0706.46047)].

### MSC:

 16W30 Hopf algebras (associative rings and algebras) (MSC2000) 16S40 Smash products of general Hopf actions 16S50 Endomorphism rings; matrix rings 16H05 Separable algebras (e.g., quaternion algebras, Azumaya algebras, etc.) 16L60 Quasi-Frobenius rings

Zbl 0706.46047
Full Text:

### References:

 [1] Blattner, R.; Montgomery, S., A duality theorem for Hopf module algebras, J. Algebra, 95, 153-172 (1985) · Zbl 0589.16010 [2] Böhm, G.; Nill, F.; Szlachányi, K., Weak Hopf algebras, I. Integral theory and $$C$$*-structure, J. Algebra, 221, 385-438 (1999) · Zbl 0949.16037 [3] Böhm, G.; Szlachányi, K., A coassociative $$C$$*-quantum group with nonintegral dimensions, Lett. Math. Phys., 35, 437-456 (1996) · Zbl 0872.16022 [4] Etingof, P.; Nikshych, D., Dynamical quantum groups at roots 1, Duke Math. J., 108, 135-168 (2001) · Zbl 1023.17007 [5] Goodman, F.; de la Harpe, P.; Jones, V. F.R., Coxeter Graphs and Towers of Algebras. Coxeter Graphs and Towers of Algebras, M. S. R. I. Publ. 14 (1989), Springer-Verlag: Springer-Verlag Heidelberg · Zbl 0698.46050 [6] Hirata, K.; Sugano, K., On semisimple extensions and separable extensions over non commutative rings, J. Math. Soc. Japan, 18, 360-373 (1966) · Zbl 0178.36802 [7] Jones, V. F.R., Index for subfactors, Invent. Math, 72, 1-25 (1983) · Zbl 0508.46040 [8] Jones, V. F.R., Index for subrings of rings, Contemp. Math., 43, 181-190 (1985) · Zbl 0607.46033 [9] Kadison, L., The Jones polynomial and certain separable Frobenius extensions, J. Algebra, 186, 461-475 (1996) · Zbl 0880.16011 [10] Kadison, L., New Examples of Frobenius Extensions. New Examples of Frobenius Extensions, University Lecture Series, 14 (1999), Am. Math. Soc: Am. Math. Soc Providence · Zbl 0929.16036 [11] Kadison, L.; Nikshych, D., Outer actions of centralizer Hopf algebras on separable extensions, Comm. Algebra, 29 (2001) · Zbl 1010.16037 [12] Kanzaki, T., Special type of separable algebra over commutative ring, Proc. Japan Acad., 40, 781-786 (1964) · Zbl 0143.05603 [13] Kasch, F., Projektive Frobenius Erweiterungen, Sitzungsber. Heidelberg. Akad. Wiss. Math.-Natur. Kl., 89-109 (1960/1961) · Zbl 0104.26201 [14] Kasch, F., Dualitätseigenschaften von Frobenius-Erweiterungen, Math. Z., 77, 219-227 (1961) · Zbl 0112.26502 [15] Montgomery, S., Hopf Algebras and Their Actions on Rings. Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Series in Math., 82 (1993), A. M. S: A. M. S Providence · Zbl 0793.16029 [16] Nikshych, D., A duality theorem for quantum groupoids, (Andruskiewitsch, N.; Santos, F.; Schneider, H.-J., New Trends in Hopf Algebra Theory. New Trends in Hopf Algebra Theory, Contemp. Math., 267 (2000)), 237-243 · Zbl 0978.16032 [17] D. Nikshych, V. Turaev, and, L. Vainerman, Quantum groupoids and invariants of knots and 3-manifolds, J. Topology Appl, to appear.; D. Nikshych, V. Turaev, and, L. Vainerman, Quantum groupoids and invariants of knots and 3-manifolds, J. Topology Appl, to appear. · Zbl 1021.16026 [18] Nikshych, D.; Vainerman, L., A characterization of depth 2 subfactors of $$II_1$$ factors, J. Funct. Anal., 171, 278-307 (2000) · Zbl 1010.46063 [19] Nikshych, D.; Vainerman, L., A Galois correspondence for actions of quantum groupoids on $$II_1$$-factors, J. Funct. Anal., 178, 113-142 (2000) · Zbl 0995.46041 [20] D. Nikshych, and, L. Vainerman, Finite dimensional quantum groupoids and their applications, in; D. Nikshych, and, L. Vainerman, Finite dimensional quantum groupoids and their applications, in · Zbl 1026.17017 [21] Ocneanu, A., Quantized groups, string algebras and Galois theory for algebras, Operator Algebras and Applications. Operator Algebras and Applications, London Math. Soc. Lecture Notes Series 135, 2 (1988), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0696.46048 [22] Onodera, T., Some studies on projective Frobenius extensions, J. Fac. Sci. Hokkaido Univ. Ser. I, 18, 89-107 (1964) · Zbl 0127.25801 [23] Pimsner, M.; Popa, S., Iterating the basic construction, Trans. Amer. Math. Soc., 310, 127-133 (1988) · Zbl 0706.46047 [24] Stolin, A. A.; Kadison, L., Separability and Hopf algebras, (Huynh; Jain; Lopez-Permouth, Algebra and Its Applications. Algebra and Its Applications, Contemp. Math., 259 (2000)), 279-298 · Zbl 0974.16033 [25] K. Szlachányi, Weak Hopf Algebra Symmetries of $$C$$; K. Szlachányi, Weak Hopf Algebra Symmetries of $$C$$ [26] Szymański, W., Finite index subfactors and Hopf algebra crossed products, Proc. Amer. Math. Soc., 120, 519-528 (1994) · Zbl 0802.46076 [27] Watatani, Y., Index of $$C$$*-subalgebras, Mem. Amer. Math. Soc., 83 (1990) · Zbl 0697.46024 [28] Xiaolong, J.; Yongchua, X., $$H$$-separable rings and their Hopf-Galois extensions, Chinese Ann. Math. Ser. B., 19, 311-320 (1998) · Zbl 0910.16021 [29] Yamagata, K., Frobenius algebras, (Hazewinkel, M., Handbook of Algebra (1996), Elsevier: Elsevier Amsterdam), 841-887 · Zbl 0879.16008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.