×

Theory and numerical analysis for exact distributions of functionals of a Dirichlet process. (English) Zbl 1018.62011

Summary: The distribution of a mean or, more generally, of a vector of means of a Dirichlet process is considered. Some characterizing aspects of this paper are: (i) a review of a few basic results, providing new formulations free from many of the extra assumptions considered to date in the literature, and giving essentially new, simpler and more direct proofs; (ii) new numerical evaluations, with any prescribed error of approximation, of the distribution at issue; (iii) a new form for the law of a vector of means.
Moreover, as applications of these results, we give: (iv) the sharpest condition sufficient for the distribution of a mean to be symmetric; (v) forms for the probability distribution of the variance of the Dirichlet random measure; (vi) some hints for determining the finite-dimensional distributions of a random function connected with Bayesian methods for queuing models.

MSC:

62E15 Exact distribution theory in statistics
65C60 Computational problems in statistics (MSC2010)
62F15 Bayesian inference
62E17 Approximations to statistical distributions (nonasymptotic)
Full Text: DOI

References:

[1] ANDREWS, G. E., ASKEY, R. and ROY, R. (1999). Special Functions. Cambridge Univ. Press. · Zbl 0920.33001
[2] BILODEAU, M. and BRENNER, D. (1999). Theory of Multivariate Statistics. Springer, New York. · Zbl 0930.62054
[3] CIFARELLI, D. M. and MELILLI, E. (2000). Some new results for Dirichlet priors. Ann. Statist. 28 1390-1413. · Zbl 1105.62303 · doi:10.1214/aos/1015957399
[4] CIFARELLI, D. M. and REGAZZINI, E. (1978). Problemi statistici non parametrici in condizioni di scambiabilità parziale: impiego di medie associative. Quaderni dell’Istituto di Matematica Finanziaria dell’Università di Torino Ser. III 1-36.
[5] CIFARELLI, D. M. and REGAZZINI, E. (1979a). Considerazioni generali sull’impostazione Bayesiana di problemi non parametrici. Le medie associative nel contesto del processo aleatorio di Dirichlet I. Riv. Mat. Sci. Econom. Social. 2 39-52. · Zbl 0492.62041 · doi:10.1007/BF02626108
[6] CIFARELLI, D. M. and REGAZZINI, E. (1979b). Considerazioni generali sull’impostazione Bayesiana di problemi non parametrici. Le medie associative nel contesto del processo aleatorio di Dirichlet II. Riv. Mat. Sci. Econom. Social. 2 95-111. · Zbl 0492.62042 · doi:10.1007/BF02620300
[7] CIFARELLI, D. M. and REGAZZINI, E. (1990). Distribution functions of means of a Dirichlet process. Ann. Statist. 18 429-442. [Correction (1994) 22 1633-1634.] · Zbl 0706.62012 · doi:10.1214/aos/1176347509
[8] CIFARELLI, D. M. and REGAZZINI, E. (1993). Some remarks on the distribution functions of means of a Dirichlet process. Quaderno IAMI 93.4, CNR-IAMI, Milano.
[9] CIFARELLI, D. M. and REGAZZINI, E. (1996). Tail-behaviour and finiteness of means of distributions chosen from a Dirichlet process. Quaderno IAMI 96.19, CNR-IAMI, Milano.
[10] CONTI, P. L. (1999). Large sample Bayesian analysis for Geo/G/1 discrete-time queuing models. Ann. Statist. 27 1785-1807. · Zbl 0963.62092 · doi:10.1214/aos/1017939239
[11] DAVIES, R. B. (1973). Numerical inversion of a characteristic function. Biometrika 60 415-417. JSTOR: · Zbl 0263.65115 · doi:10.1093/biomet/60.2.415
[12] DAWSON, D. A. (1993). Measure-valued Markov processes. École d’Été de Probabilités de St.-Flour XXI. Lecture Notes in Math. 1541 1-260. Springer, New York. · Zbl 0799.60080
[13] DIACONIS, P. and KEMPERMAN, J. (1996). Some new tools for Dirichlet priors. In Bayesian Statistics 5 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 97-106. Clarendon Press, Oxford.
[14] FEIGIN, P. D. and TWEEDIE, R. L. (1989). Linear functionals and Markov chains associated with Dirichlet processes. Math. Proc. Cambridge Philos. Soc. 105 579-585. · Zbl 0677.60080 · doi:10.1017/S0305004100077951
[15] FLORENS, J. P. and ROLIN, J.-M. (1994). Bay es, bootstrap, moments. Discussion paper 94.13, Institut de Statistique, Univ. Catholique de Louvain.
[16] FOLLAND, G. B. (1984). Real Analy sis. Wiley, New York.
[17] GELFAND, A. E. and KOTTAS, A. (2002). A computational approach for full nonparametric Bayesian inference under Dirichlet process mixture models J. Comput. Graph. Statist. 11 284-305. JSTOR: · doi:10.1198/106186002760180518
[18] GELFAND, A. E. and MUKHOPADHy AY, S. (1995). On nonparametric Bayesian inference for the distribution of a random sample. Canad. J. Statist. 23 411-420. JSTOR: · Zbl 0858.62028 · doi:10.2307/3315384
[19] GRADSHTEy N, I. S. and Ry ZHIK, I. M. (1994). Table of Integrals, Series, and Products, 5th ed. Academic Press, San Diego.
[20] GUGLIELMI, A. (1998). A simple procedure calculating the generalized Stieltjes transform of the mean of a Dirichlet process. Statist. Probab. Lett. 38 299-303. · Zbl 0916.60046 · doi:10.1016/S0167-7152(98)00034-0
[21] GUGLIELMI, A., HOLMES, C. and WALKER, S. (2002). Perfect simulation involving functions of a Dirichlet process. J. Comput. Graph. Statist. 11 306-310. JSTOR: · doi:10.1198/106186002760180527
[22] GUGLIELMI, A. and TWEEDIE, R. (2001). Markov chain Monte Carlo estimation of the law of the mean of a Dirichlet process. Bernoulli 7 573-592. · Zbl 1005.62073 · doi:10.2307/3318726
[23] GURLAND, J. (1948). Inversion formulae for the distributions of ratios. Ann. Math. Statist. 19 228- 237. · Zbl 0032.03403 · doi:10.1214/aoms/1177730247
[24] HANNUM, R. C., HOLLANDER, M. and LANGBERG, N. A. (1981). Distributional results for random functionals of a Dirichlet process. Ann. Probab. 9 665-670. · Zbl 0473.60019 · doi:10.1214/aop/1176994373
[25] HUGHETT, P. (1998). Error bounds for numerical inversion of a probability characteristic function. SIAM J. Numer. Anal. 35 1368-1392. JSTOR: · Zbl 0912.65119 · doi:10.1137/S003614299631085X
[26] KALLENBERG, O. (1997). Foundations of Modern Probability. Springer, New York. · Zbl 0892.60001
[27] LIJOI, A. and REGAZZINI, E. (2001). Means of a Dirichlet process and multiple hy pergeometric functions. Quaderno IAMI 01.09, CNR-IAMI, Milano.
[28] MULIERE, P. and TARDELLA, L. (1998). Approximating distributions of random functionals of Ferguson-Dirichlet priors. Canad. J. Statist. 26 283-297. JSTOR: · Zbl 0913.62010 · doi:10.2307/3315511
[29] OLDHAM, K. B. and SPANIER, J. (1974). The Fractional Calculus. Academic Press, New York. · Zbl 0292.26011
[30] REGAZZINI, E. (1998). An example of the interplay between statistics and special functions. In Atti dei Convegni Lincei 147: Tricomi’s Ideas and Contemporary Applied Mathematics 303- 320. Accademia Nazionale dei Lincei, Roma. · Zbl 1136.33301
[31] REGAZZINI, E., GUGLIELMI, A. and DI NUNNO, G. (2000). Theory and numerical analysis for exact distributions of functionals of a Dirichlet process. Quaderno IAMI 00.12, CNR-IAMI, Milano. · Zbl 1018.62011
[32] REGAZZINI, E., LIJOI, A. and PRÜNSTER, I. (2003). Distributional results for means of normalized random measures with independent increments. Ann. Statist. 31. · Zbl 1068.62034 · doi:10.1214/aos/1051027881
[33] TAMURA, H. (1988). Estimation of rare errors using expert judgment. Biometrika 75 1-9. JSTOR: · Zbl 0644.62033 · doi:10.1093/biomet/75.1.1
[34] TSILEVICH, N., VERSHIK, A. and YOR, M. (2000). Distinguished properties of the gamma process and related topics. Prépublication 575, Laboratoire de Probabilité et Modeles aléatoires, Univ. Paris VI et Paris VII.
[35] WALKER, S. G., DAMIEN, P., LAUD, P. W. and SMITH, A. F. M. (1999). Bayesian nonparametric inference for random distributions and related functions (with discussion). J. Roy. Statist. Soc. Ser. B 61 485-527. JSTOR: · Zbl 0983.62027 · doi:10.1111/1467-9868.00190
[36] VIA FERRATA, 1 27100 PAVIA ITALY E-MAIL: eugenio@dimat.unipv.it giulia@dimat.unipv.it A. GUGLIELMI ISTITUTO PER LE APPLICAZIONI DELLA MATEMATICA E DELL’INFORMATICA CONSIGLIO NAZIONALE DELLE RICERCHE VIA AMPERE, 56 20131 MILANO ITALY E-MAIL: alessan@iami.mi.cnr.it
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.