Gosse, Laurent A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. (English) Zbl 1018.65108 Math. Models Methods Appl. Sci. 11, No. 2, 339-365 (2001). Summary: The aim of this paper is to present a new kind of numerical processing for hyperbolic systems of conservation laws with source terms. This is achieved by means of a non-conservative reformulation of the zero-order terms of the right-hand side of the equations. In this context, we decided to use the results of G. Dal Maso, P. G. Le Floch and F. Murat about non-conservative products [J. Math. Pures Appl. IX. Sér. 74, No. 6, 483-548 (1995; Zbl 0853.35068)], and the generalized Roe matrices introduced by I. Toumi [J. Comput. Phys. 102, No. 2, 360-373 (1992; Zbl 0783.65068)] to derive a first-order linearized well-balanced scheme in the sense of J. M. Greenberg and A.-Y. Le Roux [SIAM J. Numer. Anal. 33, No. 1, 1-16 (1996; Zbl 0876.65064)]. As a main feature, this approach is able to preserve the right asymptotic behavior of the original inhomogeneous system, which is not an obvious property. Numerical results for the Euler equations are shown to handle correctly these equilibria in various situations. Cited in 66 Documents MSC: 65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs 76M20 Finite difference methods applied to problems in fluid mechanics 65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs 35L65 Hyperbolic conservation laws 76N15 Gas dynamics (general theory) Keywords:convergence; Cauchy problem; numerical results; hyperbolic systems of conservation laws with source terms; generalized Roe matrices; Euler equations Citations:Zbl 0853.35068; Zbl 0783.65068; Zbl 0876.65064 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] DOI: 10.1080/03605307908820117 · Zbl 0418.35024 · doi:10.1080/03605307908820117 [2] DOI: 10.1007/s002110050282 · Zbl 0873.35047 · doi:10.1007/s002110050282 [3] DOI: 10.1137/0907051 · Zbl 0594.76057 · doi:10.1137/0907051 [4] Bourgeade A., Ann. I.H.P. Nonlinear Anal. 6 pp 437– (1989) [5] Cargo P., C.R. Acad. Sci. Paris Série I 318 pp 73– (1994) [6] DOI: 10.1016/0022-247X(89)90129-7 · Zbl 0691.35057 · doi:10.1016/0022-247X(89)90129-7 [7] Dal Maso G., J. Math. Pures Appl. 74 pp 483– (1995) [8] DOI: 10.1137/0152055 · Zbl 0755.35068 · doi:10.1137/0152055 [9] DOI: 10.1016/0898-1221(93)90052-W · Zbl 0787.65063 · doi:10.1016/0898-1221(93)90052-W [10] DOI: 10.1016/0196-8858(84)90002-2 · Zbl 0566.76056 · doi:10.1016/0196-8858(84)90002-2 [11] DOI: 10.1016/S0764-4442(99)80024-X · Zbl 0909.65059 · doi:10.1016/S0764-4442(99)80024-X [12] DOI: 10.1016/S0898-1221(00)00093-6 · Zbl 0963.65090 · doi:10.1016/S0898-1221(00)00093-6 [13] Gosse L., C.R. Acad. Sci. Paris Série I 323 pp 543– (1996) [14] Godunov S. K., Math. USSR Sbor. 47 pp 271– (1959) [15] DOI: 10.1137/0733001 · Zbl 0876.65064 · doi:10.1137/0733001 [16] DOI: 10.1137/0523050 · Zbl 0757.35042 · doi:10.1137/0523050 [17] DOI: 10.1090/S0025-5718-1994-1201068-0 · doi:10.1090/S0025-5718-1994-1201068-0 [18] DOI: 10.1137/S0036139992240711 · Zbl 0838.35075 · doi:10.1137/S0036139992240711 [19] DOI: 10.1006/jcph.1998.6037 · Zbl 0926.76079 · doi:10.1006/jcph.1998.6037 [20] DOI: 10.1006/jcph.1995.1196 · Zbl 0840.65098 · doi:10.1006/jcph.1995.1196 [21] DOI: 10.1006/jcph.1996.0149 · Zbl 0860.65089 · doi:10.1006/jcph.1996.0149 [22] DOI: 10.1070/SM1970v010n02ABEH002156 · Zbl 0215.16203 · doi:10.1070/SM1970v010n02ABEH002156 [23] DOI: 10.1007/BF00695275 · Zbl 0784.73010 · doi:10.1007/BF00695275 [24] Le Floch P. G., Ann. I.H.P. Nonlinear Anal. 5 pp 179– (1989) [25] DOI: 10.1137/S0036141098341794 · Zbl 0939.35115 · doi:10.1137/S0036141098341794 [26] DOI: 10.1006/jcph.1998.6058 · Zbl 0931.76059 · doi:10.1006/jcph.1998.6058 [27] DOI: 10.1016/0021-9991(90)90097-K · Zbl 0682.76053 · doi:10.1016/0021-9991(90)90097-K [28] DOI: 10.1007/BF01418125 · Zbl 0435.35054 · doi:10.1007/BF01418125 [29] DOI: 10.1137/0135035 · Zbl 0397.35067 · doi:10.1137/0135035 [30] DOI: 10.1137/0153062 · Zbl 0787.65062 · doi:10.1137/0153062 [31] DOI: 10.1142/S021820259500019X · Zbl 0837.76089 · doi:10.1142/S021820259500019X [32] DOI: 10.1016/0021-9991(81)90128-5 · Zbl 0474.65066 · doi:10.1016/0021-9991(81)90128-5 [33] DOI: 10.1007/BFb0078316 · doi:10.1007/BFb0078316 [34] DOI: 10.1016/0021-9991(92)90378-C · Zbl 0783.65068 · doi:10.1016/0021-9991(92)90378-C [35] DOI: 10.1007/3-540-11948-5_66 · doi:10.1007/3-540-11948-5_66 [36] DOI: 10.1137/0905001 · Zbl 0547.65065 · doi:10.1137/0905001 [37] DOI: 10.1070/SM1967v002n02ABEH002340 · Zbl 0168.07402 · doi:10.1070/SM1967v002n02ABEH002340 [38] DOI: 10.2514/3.51181 · Zbl 0496.76065 · doi:10.2514/3.51181 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.