Močkoř, Jiří Topological characterizations of ordered groups with quasi-divisor theory. (English) Zbl 1019.06008 Czech. Math. J. 52, No. 3, 595-607 (2002). Summary: For an order embedding \(G @>h>>\Gamma \) of a partially ordered group \(G\) into an \(l\)-group \(\Gamma \) a topology \(\mathcal T_{\widehat W}\) is introduced on \(\Gamma\) that is defined by a family of valuations \(W\) on \(G\). Some density properties of the sets \(h(G)\), \(h(X_t)\) and \((h(X_t)\setminus \{h(g_1),\dots ,h(g_n)\})\) (\(X_t\) being the \(t\)-ideals in \(G\)) in the topological space \((\Gamma ,\mathcal T_{\widehat W})\) are then investigated, each of them being equivalent to the statement that \(h\) is a strong theory of quasi-divisors. Cited in 1 Document MSC: 06F15 Ordered groups Keywords:quasi-divisor theory; ordered group; valuations; \(t\)-ideal × Cite Format Result Cite Review PDF Full Text: DOI References: [1] I. Arnold: Ideale in kommutativen Halbgruppen. Rec. Math. Soc. Math. Moscow 36 (1929), 401-407. · JFM 55.0681.03 [2] M. Anderson and T. Feil: Lattice-ordered Groups. D. Reidl Publ. Co., Dordrecht, Tokyo, 1988. · Zbl 0636.06008 [3] K. E. Aubert: Divisors of finite character. Ann. Mat. Pura Appl. 33 (1983), 327-361. · Zbl 0533.20034 · doi:10.1007/BF01766024 [4] K. E. Aubert: Localizations dans les systémes d’idéaux. C. R. Acad. Sci. Paris 272 (1971), 465-468. · Zbl 0216.05001 [5] Z. I. Borevich and I. R. Shafarevich: Number Theory. Academic Press, New York, 1966. · Zbl 0145.04902 [6] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. · Zbl 0258.06011 [7] L. G. Chouinard: Krull semigroups and divisor class group. Canad. J. Math. 33 (1981), 1459-1468. · Zbl 0453.13005 · doi:10.4153/CJM-1981-112-x [8] A. Geroldinger and J. Močkoř: Quasi-divisor theories and generalizations of Krull domains. J. Pure Appl. Algebra 102 (1995), 289-311. · Zbl 0853.13012 · doi:10.1016/0022-4049(94)00088-Z [9] R. Gilmer: Multiplicative Ideal Theory. M. Dekker, Inc., New York, 1972. · Zbl 0248.13001 [10] M. Griffin: Rings of Krull type. J. Reine Angew. Math. 229 (1968), 1-27. · Zbl 0173.03504 · doi:10.1515/crll.1968.229.1 [11] M. Griffin: Some results on \(v\)-multiplication rings. Canad. J. Math. 19 (1967), 710-722. · Zbl 0148.26701 · doi:10.4153/CJM-1967-065-8 [12] P. Jaffard: Les systémes d’idéaux. Dunod, Paris, 1960. · Zbl 0101.27502 [13] J. Močkoř: Groups of Divisibility. D. Reidl Publ. Co., Dordrecht, 1983. · Zbl 0528.13001 [14] J. Močkoř and J. Alajbegovic: Approximation Theorems in Commutative Algebra. Kluwer Academic publ., Dordrecht, 1992. [15] J. Močkoř and A. Kontolatou: Groups with quasi-divisor theory. Comm. Math. Univ. St. Pauli, Tokyo 42 (1993), 23-36. · Zbl 0794.06015 [16] J. Močkoř and A. Kontolatou: Divisor class groups of ordered subgroups. Acta Math. Inform. Univ. Ostraviensis 1 (1993), 37-46. · Zbl 0849.06013 [17] J. Močkoř and A. Kontolatou: Quasi-divisors theory of partly ordered groups. Grazer Math. Ber. 318 (1992), 81-98. · Zbl 0794.06014 [18] J. Močkoř: \(t\)-valuation and theory of quasi-divisors. J. Pure Appl. Algebra 120 (1997), 51-65. · Zbl 0885.06008 · doi:10.1016/S0022-4049(96)00059-X [19] J. Močkoř and A. Kontolatou: Some remarks on Lorezen \(r\)-group of partly ordered group. Czechoslovak Math. J. 46(121) (1996), 537-552. · Zbl 0879.20031 [20] J. Močkoř: Divisor class group and the theory of quasi-divisors. To appear. · Zbl 0955.06011 [21] J. Ohm: Semi-valuations and groups of divisibility. Canad. J. Math. 21 (1969), 576-591. · Zbl 0177.06501 · doi:10.4153/CJM-1969-065-9 [22] L. Skula: Divisorentheorie einer Halbgruppe. Math. Z. 114 (1970), 113-120. · Zbl 0177.03202 · doi:10.1007/BF01110320 [23] L. Skula: On \(c\)-semigroups. Acta Arith. 31 (1976), 247-257. · Zbl 0303.13014 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.