×

Stacked bases for homogeneous completely decomposable groups. (English) Zbl 1019.20022

Let \(R\) be a subgroup of the rationals containing the ring of integers and \(R_0\) the maximal subring of \(R\). An \(R\)-representation of an (Abelian) group \(G\) is an exact sequence \(0\to A\to X\to G\to 0\) such that \(A\) and \(X\) are homogeneous completely decomposable groups of type \(R\). A result of P. Hill and C. Megibben [Trans. Am. Math. Soc. 312, No. 1, 377-402 (1989; Zbl 0668.20043)] on equivalence of \(R\)-representations of \(R_0\)-modules is generalized from the case \(R=R_0\) to arbitrary \(R\). Another result states that there exists a stacked basis for \(A\subset X\) (i.e. a decomposition \(X=\bigoplus x_iR\) such that \(A=\bigoplus r_ix_iR\) for some \(r_i\in R_0)\) iff \(X/A\) is a direct sum of cyclic torsion \(R_0\)-modules and a homogeneous completely decomposable group of type \(R\).

MSC:

20K25 Direct sums, direct products, etc. for abelian groups
20K15 Torsion-free groups, finite rank

Citations:

Zbl 0668.20043
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benabdallah K., Lecture Notes Pure Applied Math., in: Proc. Int. Conf. Abelian Groups and Modules pp 143– (1995)
[2] DOI: 10.1016/0021-8693(70)90097-9 · Zbl 0191.32203 · doi:10.1016/0021-8693(70)90097-9
[3] Fuchs L., Infinite Abelian Groups (1970) · Zbl 0209.05503
[4] Generalov A. I., St. Petersburg Math. J. 7 pp 619– (1996)
[5] Hill P., Proc. Int. Conf. Curacao, LN Pure Applied Math. 147 pp 65– (1975)
[6] DOI: 10.1090/S0002-9947-1989-0937245-8 · doi:10.1090/S0002-9947-1989-0937245-8
[7] Mader A., Algebra, Logic and Applications 11 (1999)
[8] Metelli C., Archiv Math. 26 pp 480– (1975) · Zbl 0329.20035 · doi:10.1007/BF01229770
[9] Ould-Beddi M. A., Int. Proc. of the Dublin Conf. ”Abelian Groups and Modules” pp 199– (1999)
[10] Ould-Beddi M. A., Stacked bases for countable homogeneous completely decomposable groups · Zbl 0991.20039 · doi:10.1081/AGB-100106761
[11] Salce L., J. Algebra 207 pp 182– (1998) · Zbl 0916.13003 · doi:10.1006/jabr.1998.7446
[12] DOI: 10.1007/BF01110257 · Zbl 0169.03602 · doi:10.1007/BF01110257
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.