×

zbMATH — the first resource for mathematics

Central extensions of infinite-dimensional Lie groups. (English) Zbl 1019.22012
The central result of this extensive paper is the following exact sequence for a connected Lie group \(G\), its universal covering group \(\widetilde G\), the discrete central subgroup \(\pi_1(G) \subseteq \widetilde G\), and an abelian Lie group \(Z\) which can be written as \(Z=z/ \Gamma\), where \(\Gamma \subseteq z\) is a discrete subgroup: \[ \begin{split} \operatorname{Hom}(G,Z) \hookrightarrow \operatorname{Hom}(\widetilde G,Z)\to \operatorname{Hom}\bigl(\pi_1(G), Z\bigr)\to\text{Ext}_{\text{Lie}} (G,Z)\to\\ \to H^2_c(g,z) \to\operatorname{Hom}\bigl( \pi_2(G),Z\bigr) \times \operatorname{Hom}\bigl(\pi_1(G),\text{Lin} \bigl(g,z)\bigr),\end{split} \tag{1} \] where \(\text{Lin} (g,z)\) denotes the space of continuous linear maps \(g\to z\). The author describes the course of the paper as follows:
“In Section 2 we collect the necessary results on central extensions of topological groups and in Section 3 we provide some results on infinite-dimensional manifolds and Lie groups which are well-known in the finite-dimensional case. In Section 4 we explain how the setting for abstract, resp., topological groups has to be modified to deal with central extensions of Lie groups with smooth local sections. Section 5 is dedicated to the construction of the period homomorphism \(\text{per}_\omega: \pi_2 (G)\to z\). Section 6, which is the heart of the paper, contains the construction of a global group cocycle \(f:G\times G\to Z\) for simply connected groups \(G\) and any Lie algebra cocycle \(\omega\), where \(Z\) can be defined as \(z/ \Pi_\omega\). The so defined group \(Z\) is a Lie group iff \(\Pi_\omega\) is discrete, so that we obtain a Lie group extension iff \(\Pi_\omega\) is discrete. In Section 7 we eventually put all pieces together to prove the exactness of (1). The central result of Section 8 is Theorem 8.8 which gives a version of the exact sequence (1) for central Lie group extensions with smooth global sections. Section 9 is a collection of examples displaying various aspects in the description of the group \(\text{Ext}_{\text{Lie}} (G,Z)\) by the exact sequence (1)”.

MSC:
22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
58B20 Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds
58B05 Homotopy and topological questions for infinite-dimensional manifolds
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML Link
References:
[1] Topology and Geometry, 139, (1993), Springer-Verlag, Berlin · Zbl 0791.55001
[2] Sheaf Theory, 170, (1997), Springer-Verlag, Berlin · Zbl 0874.55001
[3] Loop Spaces, Characteristic Classes and Geometric Quantization, 107, (1993), Birkhäuser Verlag · Zbl 0823.55002
[4] Sur LES extensions des groupes topologiques, Brioschi Annali di Mat. Pura et Appl., Ser 4, 32, 295-370, (1951) · Zbl 0054.01302
[5] Le troisième théorème fondamental de Lie, 2, 1143-1148, (1952), Gauthier–Villars, Paris
[6] La topologie des espaces représentifs de groupes de Lie, 2, 1307-1330, (1952), Gauthier–Villars, Paris
[7] LES représentations linéaires des groupes de Lie, 2, 1339-1350, (1952), Gauthier–Villars, Paris
[8] Theory of Lie Groups I, (1946), Princeton Univ. Press · Zbl 0063.00842
[9] Espaces fibrés en algèbres de Lie et en groupes, Invent. Math, 1, 133-151, (1966) · Zbl 0144.01804
[10] Classical Banach Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space, 285, (1972), Springer-Verlag, Berlin · Zbl 0256.22015
[11] Non enlargible Lie algebras, Proc. Kon. Ned. Acad. v. Wet. A, 67, 15-31, (1964) · Zbl 0121.27503
[12] Enlargeability of local groups according to Malcev and Cartan-Smith, (1988), Hermann, Paris · Zbl 0657.22007
[13] Relations between homology and homotopy theory, Proc. Nat. Acad. Sci. U.S.A, 29, 155-158, (1943) · Zbl 0061.40701
[14] Cohomology theory in abstract groups. II, Annals of Math, 48, 2, 326-341, (1947) · Zbl 0029.34101
[15] A group theoretic interpretation of area in the elementary geometries, Simon Stevin, Wis. en Natuurkundig Tijdschrift, 32, 29-38, (1954) · Zbl 0139.14406
[16] Local and global groups, Indag. Math., 24, 391-425, (1962) · Zbl 0109.02003
[17] Une démonstration de E. Cartan du troisième théorème de Lie, Séminaire Sud-Rhodanien de Géométrie VIII: Actions Hamiltoniennes de Groupes; Troisième Théorème de Lie, (1988), Hermann, Paris · Zbl 0652.17002
[18] Infinite Abelian Groups, I, (1970), Acad. Press, New York · Zbl 0209.05503
[19] Infinite-dimensional Lie groups without completeness restriction, Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups, 55, 43-59, (2002), Banach Center Publications · Zbl 1020.58009
[20] Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups · Zbl 1022.22021
[21] Algebras whose groups of units are Lie groups, (2001) · Zbl 1009.22021
[22] The construction of a simply connected Lie group with a given Lie algebra, Russian Math. Surveys, 41, 207-208, (1986) · Zbl 0613.22005
[23] Eléments de Topologie Algébrique, (1971), Hermann, Paris · Zbl 0218.55001
[24] The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc, 7, 65-222, (1982) · Zbl 0499.58003
[25] Principal bundles and groups extensions with applications to Hopf algebras, J. Pure and Appl. Algebra, 3, 219-250, (1973) · Zbl 0275.18012
[26] Differential Topology, 33, (1976), Springer-Verlag · Zbl 0356.57001
[27] Group extensions of Lie groups I, II, Annals of Math, 54 ; 54, 1-3, 96-109 ; 537-551, (19511951) · Zbl 0045.30802
[28] The Structure of Compact Groups, (1998), de Gruyter, Berlin · Zbl 0919.22001
[29] Homotopical cohomology and cech cohomology, Math. Annalen, 144, 73-76, (1961) · Zbl 0096.37504
[30] The Convenient Setting of Global Analysis, 53, (1997), Amer. Math. Soc. · Zbl 0889.58001
[31] Fundamentals of Differential Geometry, 191, (1999), Springer-Verlag · Zbl 0932.53001
[32] Central extensions of topological current algebras, Geometry and Analysis on Finite- and Infinite-Dimensional Lie groups, 55, 61-76, (2002), Banach Center Publications · Zbl 1045.17008
[33] LES ensembles boréliens et LES extensions des groupes, J. Math, 36, 171-178, (1957) · Zbl 0080.02303
[34] Homological Algebra, (1963), Springer-Verlag
[35] Convex structures and continuous selections, Can. J. Math, 11, 556-575, (1959) · Zbl 0093.36603
[36] Remarks on infinite-dimensional Lie groups, Proc. Summer School on Quantum Gravity, Les Houches, (1983) · Zbl 0594.22009
[37] Central extensions of current groups, (2001) · Zbl 1029.22025
[38] Description of infinite dimensional abelian regular Lie groups, J. Lie Theory, 487-489, (1999) · Zbl 1012.22036
[39] Representations of infinite dimensional groups, Infinite Dimensional Kähler Manifolds, 31, (2001), Birkhäuser
[40] Universal central extensions of Lie groups · Zbl 1019.22011
[41] A note on central extensions, J. Lie Theory, 207-213, (1996) · Zbl 0868.22014
[42] Holomorphic highest weight representations of infinite dimensional complex classical groups, J. reine angew. Math, 497, 171-222, (1998) · Zbl 0894.22007
[43] Infinite-Dimensional Lie Groups, 158, (1997), Amer. Math. Soc. · Zbl 0871.58007
[44] On the homotopy type of certain groups of operators, Topology, 3, 271-279, (1965) · Zbl 0161.34501
[45] Homotopy theory of infinite dimensional manifolds, Topology, 5, 1-16, (1965) · Zbl 0138.18302
[46] Loop Groups, (1986), Oxford University Press, Oxford · Zbl 0618.22011
[47] Extensions centrales d’algèbres et de groupes de Lie de dimension infinie, algèbres de Virasoro et généralisations, Reports on Math. Phys, 35, 225-266, (1995) · Zbl 0892.17018
[48] Cohomology of topological groups, Symposia Math, 4, 377-387, (1970) · Zbl 0223.57034
[49] Unitary representations of some infinite-dimensional groups, Comm. Math. Phys, 80, 301-342, (1981) · Zbl 0495.22017
[50] Group extensions of compact Lie groups, Annals of Math, 581-586, (1949) · Zbl 0033.34704
[51] Weakly dense subgroups of Banach spaces, Indiana Univ. Math. Journal, 981-986, (1977) · Zbl 0344.46033
[52] Algebraic Topology, (1966), McGraw-Hill Book Company, New York · Zbl 0145.43303
[53] Continuous cohomology of groups and classifying spaces, Bull. of the Amer. Math. Soc, 513-530, (1978) · Zbl 0399.55009
[54] The topology of fibre bundles, (1951), Princeton University Press, Princeton, New Jersey · Zbl 0054.07103
[55] Topologie, (1991), de Gruyter, Berlin – New York · Zbl 0731.55001
[56] Infinite-dimensional Lie Theory from the Point of View of Functional Analysis, (1999)
[57] Liesche Gruppen und Algebren, (1983), Springer, New York-Heidelberg · Zbl 0506.22011
[58] Integrating unitary representations of infinite-dimensional Lie groups, Journal of Funct. Anal., 161, 478-508, (1999) · Zbl 0919.22007
[59] An elementary proof of Lie’s Third Theorem, (1995)
[60] Central extensions and physics, J. Geom. Physics, 4, 2, 207-258, (1987) · Zbl 0649.58014
[61] Geometry of Quantum Theory, (1985), Springer-Verlag · Zbl 0581.46061
[62] Foundations of Differentiable Manifolds and Lie Groups, (1983), Springer-Verlag, Berlin · Zbl 0516.58001
[63] Differential Analysis on Complex Manifolds, (1980), Springer-Verlag · Zbl 0435.32004
[64] An introduction to homological algebra, 38, (1995), Cambridge Univ. Press · Zbl 0834.18001
[65] Funktionalanalysis, (1995), Springer-Verlag, Berlin-Heidelberg · Zbl 0831.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.