Stable periodic solution of a discrete periodic Lotka-Volterra competition system. (English) Zbl 1019.39004

Consider the following discrete Lotka-Volterra competition system \[ \begin{cases} x(n+1)= x(n)\exp \biggl[r_1(n) \bigl(1-x(n)/K_1(n)-\mu_2(n) y(n) \bigr) \biggr],\\ y(n+1)=y(n) \exp\biggl[r_2(n) \bigl(1-\mu_1(n)x(n)-y(n) /K_2 (n)\bigr) \biggr] \end{cases} \] where \(K_i(n)\), \(r_i(n)\) and \(\mu_i(n)\), \(i=1,2\) are bounded non-negative sequences. Sufficient conditions are given for the persistence of the system, i.e. the existence of a compact subset \(E\subset \mathbb{R}^2_+\) such that each solution will eventually enter and remain in \(E\). The existence and stability of periodic solution is established, too.


39A11 Stability of difference equations (MSC2000)
Full Text: DOI


[1] Cao, Y.; Gard, T.C., Extinction in predator-prey models with time delays, Math. biosci., 118, 197-210, (1993) · Zbl 0806.92015
[2] Chen, L.S.; Lu, Z.Y.; Wang, W.D., The effect of delays on the permanence for lotka – volterra systems, Appl. math. lett., 8, 71-73, (1995) · Zbl 0833.34071
[3] Freedman, H.I.; Ruan, S.G., Uniform persistence in functional differential equations, J. differential equations, 115, 173-192, (1995), doi:10.1006/jdeq.1995.1011 · Zbl 0814.34064
[4] Hassell, M.P.; Comins, H.N., Discrete time models for two-species competition, Theoret. population biol., 9, 202-221, (1976) · Zbl 0338.92020
[5] Hofbauer, J.; Hutson, V.; Jansen, W., Coexistence for systems governed by difference equations of lotka – volterra type, J. math. biol., 25, 553-570, (1987) · Zbl 0638.92019
[6] Hofbauer, J.; Sigmund, K., The theory of evolution and dynamical systems, (1988), Cambridge University Press Cambridge
[7] Hutson, V.; Moran, W., Persistence of species obeying difference equations, J. math. biol., 15, 203-213, (1982) · Zbl 0495.92015
[8] Jiang, H.; Rogers, T.D., The discrete dynamics of symmetric competition in the plane, J. math. biol., 25, 573-596, (1987) · Zbl 0668.92011
[9] Kuang, Y., Delay differential equations with applications in population dynamics, (1993), Academic Press Boston, MA · Zbl 0777.34002
[10] Lu, Z.Y.; Takeuchi, Y., Permanence and global attractivity for competitive lotka – volterra systems with delay, Nonlinear anal., 22, 847-856, (1994) · Zbl 0809.92025
[11] Lu, Z.; Wang, W., Permanence and global attractivity for lotka – volterra difference systems, J. math. biol., 39, 269-282, (1999) · Zbl 0945.92022
[12] May, R.M., Biological populations with nonoverlapping generations: stable points, table cycles and chaos, Science, 186, 645-647, (1974)
[13] Rogers, T.D., Chaos in systems in population biology, (), 91-146
[14] Saito, Y.; Ma, W.; Hara, T., A necessary and sufficient condition for permanence of a lotka – volterra discrete system with delays, J. math. anal. appl., 256, 162-174, (2001), doi:10.1006/jmaa.2000.7303 · Zbl 0976.92031
[15] Takeuchi, Y., Global dynamical properties of lotka – volterra systems, (1996), World Scientific River Edge, NJ · Zbl 0844.34006
[16] Wang, W.; Mulone, G.; Salemi, F.; Salone, V., Global stability of discrete population models with time delays and fluctuating environment, J. math. anal. appl., 264, 147-167, (2001), doi:10.1006/jmaa.2001.7666 · Zbl 1006.92025
[17] Wang, W.; Ma, Z., Harmless delays for uniform persistence, J. math. anal. appl., 158, 256-268, (1991) · Zbl 0731.34085
[18] Z. Zhou, X. Zou, Stable periodic solutions in a discrete periodic logistic equation, Appl. Math. Lett. (to appear) · Zbl 1049.39017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.