Heusener, Michael An orientation for the SU(2)-representation space of knot groups. (English) Zbl 1019.57002 Topology Appl. 127, No. 1-2, 175-197 (2003). Let \(K\subset S^3\) be a knot and denote by \(\hat R(K)\) the space of equivalence classes of irreducible representations of the knot group \(G=\pi_1(S^3\setminus K)\) in \(SU(2)\). Let \(Reg(K)\subset \hat R(K)\) be the space of regular representations, i.e irreducible representations \(\rho:G\rightarrow SU(2)\) such that \(H_\rho^1(G)\cong rb\) where \(H_\rho^*(G)=H^*(G,Ad\rho)\) denotes the twisted cohomology group of \(G\) with coefficients in \(su(2)\).It was proved by M. Heusener and E. P. Klassen in [Proc. Am. Math. Soc. 125, 3039-3047 (1997; Zbl 0883.57001)] that \(Reg(K)\subset \hat R(K)\) is a real one dimensional manifold. In this paper, the author proves that \(Reg(K)\) also carries a canonical orientation. A first consequence of this result is that there exists a large class of knots which have at least a one dimensional representation space \(\hat R(K)\). As a further application, the author explains a generalization of a result of X. S. Lin [J. Differential Geometry 35, 337-357 (1992; Zbl 0774.57007)] M. Heusener and J. Kroll [Comment. Math. Helv. 73, 480-498 (1998; Zbl 0910.57004)]. Using the orientation of the representation space, he proves that the generalized Lin invariant and the signature of the knot are the same quantities as they turn out to be a weighted sum of zeros of the Alexander polynomial on the unit circle. Reviewer: Leila Ben Abdelghani (Monastir) Cited in 12 Documents MSC: 57M25 Knots and links in the \(3\)-sphere (MSC2010) 57M05 Fundamental group, presentations, free differential calculus 57M27 Invariants of knots and \(3\)-manifolds (MSC2010) Keywords:knot group; Casson invariant; representation spaces Citations:Zbl 0883.57001; Zbl 0774.57007; Zbl 0910.57004 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Akbulut, S.; McCarthy, J., Casson’s Invariant for Homology 3-Spheres—An Exposition. Casson’s Invariant for Homology 3-Spheres—An Exposition, Math. Notes, 36 (1990), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0695.57011 [2] Bochnak, J.; Coste, M.; Roy, M.-F., Géométrie Algébrique Réelle. Géométrie Algébrique Réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete (1987), Springer-Verlag: Springer-Verlag Berlin · Zbl 0633.14016 [3] Birman, J. S., Braids, Links and Mapping Class Groups. Braids, Links and Mapping Class Groups, Ann. of Math. Stud., 82 (1976), Princeton University Press: Princeton University Press Princeton, NJ [4] Birman, J. S., On the stable equivalence of plat representations of knots and links, Canad. J. Math., 28, 264-290 (1976) · Zbl 0339.55005 [5] Burde, G., \( SU(2)\)-representation spaces for two-bridge knot groups, Math. Ann., 288, 103-119 (1990) · Zbl 0694.57003 [6] Burde, G.; Zieschang, H., Knots (1985), de Gruyter: de Gruyter Berlin · Zbl 0568.57001 [7] Frohman, C. D.; Long, D. D., Casson’s invariant and surgery on knots, Proc. Edinburgh Math. Soc. (2), 35, 3, 383-395 (1992) · Zbl 0764.57010 [8] Guillou, L.; Marin, A., Notes sur l’invariant de Casson des sphères d’homologie de dimension trois, Enseign. Math. (2), 38, 233-290 (1992) · Zbl 0776.57008 [9] Heusener, M., \( SO(3)\)-representation curves for two-bridge knot groups, Math. Ann., 298, 327-348 (1994) · Zbl 0795.57003 [10] Hilton, H. H., Generators for two subgroups related to the braid groups, Pacific J. Math., 59, 475-486 (1975) · Zbl 0317.57005 [11] Hirsch, M. W., Differential Topology. Differential Topology, Graduate Texts in Math., 33 (1976), Springer-Verlag: Springer-Verlag Berlin · Zbl 0356.57001 [12] Heusener, M.; Klassen, E. P., Deformations of dihedral representations, Proc. Amer. Math. Soc., 125, 3039-3047 (1997) · Zbl 0883.57001 [13] Heusener, M.; Kroll, J., Deforming abelian \(SU(2)\)-representations of knot groups, Comment. Math. Helv., 73, 480-498 (1998) · Zbl 0910.57004 [14] Kauffman, L. H., On Knots. On Knots, Ann. of Math. Stud., 115 (1987), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0627.57002 [15] Kirby, R., Problems in low-dimensional topology, (Geometric Topology (Athens, GA, 1993) (1997), American Mathematical Society: American Mathematical Society Providence, RI), 35-473 · Zbl 0888.57014 [16] Klassen, E. P., Representations of knot groups in \(SU(2)\), Trans. Amer. Math. Soc., 326, 2, 795-828 (August 1991) · Zbl 0743.57003 [17] Lin, X.-S., A knot invariant via representation spaces, J. Differential Geometry, 35, 337-357 (1992) · Zbl 0774.57007 [18] Lubotzky, A.; Magid, A. R., Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc., 58, 336, xi+117 (1985) · Zbl 0598.14042 [19] Porti, J., Torsion de Reidemeister pour les variétés hyperboliques, Mem. Amer. Math. Soc., 128, 612, x+139 (1997) · Zbl 0881.57020 [20] Reidemeister, K., Knoten und Geflechte, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl., 5, 105-115 (1960) · Zbl 0118.39203 [21] Weil, A., Remarks on the cohomology of groups, Ann. of Math., 80, 149-157 (1964) · Zbl 0192.12802 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.