The complex Wishart distribution and the symmetric group. (English) Zbl 1019.62047

Summary: Let \(V\) be the space of \((r,r)\) Hermitian matrices and let \(\Omega\) be the cone of the positive definite ones. We say that the random variable \(S\), taking its values in \(\overline\Omega\), has the complex Wishart distribution \(\gamma_{p,\sigma}\) if \(\mathbb{E}(\text{exp trace}(\theta S))=(\det(I_r -\sigma \theta))^{-p}\), where \(\sigma\) and \(\sigma^{-1} -\theta\) are in \(\Omega\), and where \(p=1,2,\dots, r-1\) or \(p>r-1\). We compute all moments of \(S\) and \(S^{-1}\). The techniques involve in particular the use of the irreducible characters of the symmetric group.


62H05 Characterization and structure theory for multivariate probability distributions; copulas
20B30 Symmetric groups
20C30 Representations of finite symmetric groups
60E05 Probability distributions: general theory


Full Text: DOI


[1] BRILLINGER, D. R. and KRISHNAIAH, P. R., eds. (1983). Time Series in the Frequency Domain. North-Holland, Amsterdam. · Zbl 0527.00026
[2] CAPITAINE, M. and CASALIS, M. (2002). Asy mptotic freeness by generalized moments for Gaussian and Wishart matrices. Application to Beta random matrices. Unpublished manuscript. · Zbl 1063.46054
[3] CASALIS, M. and LETAC, G. (1994). Characterization of the Jorgensen set in the generalized linear model. Test 3 145-162. · Zbl 0815.62030
[4] FULTON, W. (1997). Young Tableaux. Cambridge Univ. Press. · Zbl 0878.14034
[5] FULTON, W. and HARRIS, J. (1991). Representation Theory. Springer, New York. · Zbl 0744.22001
[6] GAP99 (1999). The GAP group, GAP-groups, algorithms, and programming, version 4.2. Aachen, St. Andrews. Available at www-gap.dcs.st-and.ac.uk/ gap.
[7] GOODMAN, N. R. (1963). Statistical analysis based on a certain multivariate complex Gaussian distribution. Ann. Math. Statist. 34 152-177. · Zbl 0122.36903
[8] GRACZy K, P., LETAC, G. and MASSAM, H. (2000). The complex Wishart distribution and the sy mmetric group. Available at www.lsp.ups-tlse.fr/Fp/Letac/index.html. URL:
[9] JAMES, G. and KERBER, A. (1981). The Representation Theory of the Sy mmetric Group. AddisonWesley, Reading, MA.
[10] LETAC, G. and MASSAM, H. (1998). Quadratic and inverse regressions for Wishart distributions. Ann. Statist. 26 573-595. · Zbl 1073.62536
[11] LETAC, G. and MASSAM, H. (2000). Representations of the Wishart distributions. In Probability on Algebraic Structures (G. Budzban, P. Feinsilver and A. Mukherjea, eds.) 121-142. Amer. Math. Soc., Providence, RI. · Zbl 0971.62026
[12] MACDONALD, I. G. (1995). Sy mmetric Functions and Hall Poly nomials, 2nd ed. Clarendon Press, Oxford.
[13] MAIWALD, D. and KRAUS, D. (2000). Calculation of moments of complex Wishart and complex inverse Wishart distributed matrices. IEEE Proc. Radar Sonar Navigation 147 162-168.
[14] SIMON, B. (1996). Representations of Finite and Compact Groups. Amer. Math. Soc., Providence, RI. · Zbl 0840.22001
[15] STANLEY, R. P. (1971). Theory and application of plane partitions. I, II. Studies in Appl. Math. 50 167-187, 259-279. · Zbl 0225.05012
[16] VON ROSEN, D. (1988). Moments for the inverted Wishart distribution. Scand. J. Statist. 15 97-109. · Zbl 0663.62063
[17] WONG, C. S. and LIU, D. (1995). Moments of generalized Wishart distributions. J. Multivariate Anal. 52 280-294. · Zbl 0877.62051
[18] TORONTO, ONTARIO M3J 1P3 CANADA E-MAIL: massamh@yorku.ca
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.