zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Runge-Kutta-Nyström methods adapted to the numerical integration of perturbed oscillators. (English) Zbl 1019.65050
The paper deals with methods for the numerical integration of perturbed oscillators, i.e. nonstiff initial value problems of the form $y''(t) + \omega^2 y(t) = f(t, y(t), y'(t))$, $y(t_0) = y_0$, $y'(t_0) = y_0'$, where $f$ is assumed to be small in magnitude. For this purpose, the author derives explicit Runge-Kutta-Nyström methods of order up to 5. The order conditions are discussed in detail. Numerical examples are provided showing the efficiency of the algorithms.

MSC:
65L06Multistep, Runge-Kutta, and extrapolation methods
65L20Stability and convergence of numerical methods for ODE
34A34Nonlinear ODE and systems, general
65L05Initial value problems for ODE (numerical methods)
WorldCat.org
Full Text: DOI
References:
[1] Bettis, D. G.: Numerical integration of products of Fourier and ordinary polynomials. Numer. math. 14, 421-434 (1970) · Zbl 0198.49601
[2] Bettis, D. G.: Runge--Kutta algorithms for oscillatory problems. J. appl. Math. phys. (ZAMP) 30, 699-704 (1979) · Zbl 0412.65038
[3] Franco, J. M.; Correas, J. M.; Pétriz, F.: Métodos adaptados de tipo störmer--cowell de orden elevado. Revista internacional de métodos numéricos para cálculo y diseño en ingenierıá 7, No. 2, 193-216 (1991)
[4] Franco, J. M.; Palacián, J. F.: High order adaptive methods of Nyström--cowell type. J. comput. Appl. math. 81, 115-134 (1997) · Zbl 0879.65050
[5] González, A. B.; Martıń, P.; Farto, J. M.: A new family of Runge--Kutta type methods for the numerical integration of perturbed oscillators. Numer. math. 82, 635-646 (1999) · Zbl 0935.65075
[6] Hairer, E.; Nørsett, S. P.; Wanner, S. P.: Solving ordinary differential equations I, nonstiff problems. (1993) · Zbl 0789.65048
[7] Jain, M. K.: A modification of the Stiefel--bettis method for nonlinear damped oscillators. Bit 28, 302-307 (1988) · Zbl 0646.65063
[8] Martıń, P.; Ferrándiz, J. M.: Multistep numerical methods based on the scheifele G-functions with applications to satellite dynamics. SIAM J. Numer. anal. 34, 359-375 (1997) · Zbl 0878.65066
[9] Moore, P.: Orbitally stable multistep methods. Celes. mech. 17, 281-298 (1978) · Zbl 0388.65034
[10] Paternoster, B.: Runge--$Kutta(--Nystr\"om)$ methods for odes with periodic solutions based on trigonometric polynomials. Appl. numer. Math. 28, 401-412 (1998) · Zbl 0927.65097
[11] Sanz-Serna, J. M.; Calvo, M. P.: Numerical Hamiltonian problems. (1994) · Zbl 0816.65042
[12] Stiefel, E.; Bettis, D. G.: Stabilization of cowell’s method. Numer. math. 13, 154-175 (1969) · Zbl 0219.65062
[13] Stiefel, E. L.; Scheifele, G.: Linear and regular celestial mechanics. (1971) · Zbl 0226.70005