zbMATH — the first resource for mathematics

Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems. (English) Zbl 1019.65091
This paper deals with the standard finite element method combined with a Shishkin mesh strategy for a convection-diffusion problem \[ -\varepsilon\Delta u+ \vec\beta\nabla u+ cu= f\text{ in }\Omega= (0,1)\times (0, 1),\;u= 0\text{ on }\partial\Omega, \] where \(\varepsilon\) is a small positive number. Superconvergence in a discrete \(\varepsilon\)-weighted energy norm in the presence of exponential boundary layers is analyzed. As a consequence of the superconvergence result, the author obtains convergence of the same order in the \(L^2\)-norm and pointwise convergence of order \(N^{-3/2} \ln^{5/2} N+\varepsilon N^{-1}\ln^{1/2}N\) at some mesh points inside the boundary layer under the same regularity assumption. Some numerical results are presented.

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35B25 Singular perturbations in context of PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
65N15 Error bounds for boundary value problems involving PDEs
Full Text: DOI
[1] C. Chen and Y. Huang, High Accuracy Theory of Finite Element Methods (in Chinese), Hunan Science Press, P.R. China, 1995.
[2] K. Gerdes, J. M. Melenk, C. Schwab, and D. Schötzau, The \?\?-version of the streamline diffusion finite element method in two space dimensions, Math. Models Methods Appl. Sci. 11 (2001), no. 2, 301 – 337. · Zbl 1012.65122
[3] H. Han and R. B. Kellogg, Differentiability properties of solutions of the equation -\?²\Delta \?+\?\?=\?(\?,\?) in a square, SIAM J. Math. Anal. 21 (1990), no. 2, 394 – 408. · Zbl 0732.35020
[4] C. Johnson, A. H. Schatz, and L. B. Wahlbin, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp. 49 (1987), no. 179, 25 – 38. · Zbl 0629.65111
[5] Bruce Kellogg, Boundary layers and corner singularities for a self-adjoint problem, Boundary value problems and integral equations in nonsmooth domains (Luminy, 1993) Lecture Notes in Pure and Appl. Math., vol. 167, Dekker, New York, 1995, pp. 121 – 149. · Zbl 0824.35006
[6] M. Křížek, P. Neittaanmäki, and R. Stenberg , Finite element methods, Lecture Notes in Pure and Applied Mathematics, vol. 196, Marcel Dekker, Inc., New York, 1998. Superconvergence, post-processing, and a posteriori estimates; Papers from the conference held at the University of Jyväskylä, Jyväskylä, 1997. · Zbl 0802.00026
[7] R. D. Lazarov, L. Tobiska, and P. S. Vassilevski, Streamline diffusion least-squares mixed finite element methods for convection-diffusion problems, East-West J. Numer. Math. 5 (1997), no. 4, 249 – 264. · Zbl 0895.65049
[8] Jichun Li and Mary F. Wheeler, Uniform convergence and superconvergence of mixed finite element methods on anisotropically refined grids, SIAM J. Numer. Anal. 38 (2000), no. 3, 770 – 798. · Zbl 0974.65106
[9] Q. Lin and N. Yan, Construction and Analysis of High Efficient Finite Elements (in Chinese), Hebei University Press, P.R. China, 1996.
[10] Torsten Linß and Martin Stynes, Asymptotic analysis and Shishkin-type decomposition for an elliptic convection-diffusion problem, J. Math. Anal. Appl. 261 (2001), no. 2, 604 – 632. · Zbl 1200.35046
[11] J. M. Melenk and C. Schwab, \?\? FEM for reaction-diffusion equations. I. Robust exponential convergence, SIAM J. Numer. Anal. 35 (1998), no. 4, 1520 – 1557. · Zbl 0972.65093
[12] J. M. Melenk and C. Schwab, Analytic regularity for a singularly perturbed problem, SIAM J. Math. Anal. 30 (1999), no. 2, 379 – 400. · Zbl 1023.35009
[13] J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, Fitted numerical methods for singular perturbation problems, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. Error estimates in the maximum norm for linear problems in one and two dimensions. · Zbl 0945.65521
[14] K. W. Morton, Numerical solution of convection-diffusion problems, Applied Mathematics and Mathematical Computation, vol. 12, Chapman & Hall, London, 1996. · Zbl 0861.65070
[15] H.-G. Roos, Layer-adapted grids for singular perturbation problems, ZAMM Z. Angew. Math. Mech. 78 (1998), no. 5, 291 – 309 (English, with English and German summaries). , https://doi.org/10.1002/(SICI)1521-4001(199805)78:53.0.CO;2-R · Zbl 0905.65095
[16] H.-G. Roos, M. Stynes, and L. Tobiska, Numerical methods for singularly perturbed differential equations, Springer Series in Computational Mathematics, vol. 24, Springer-Verlag, Berlin, 1996. Convection-diffusion and flow problems. · Zbl 0844.65075
[17] A. H. Schatz, I. H. Sloan, and L. B. Wahlbin, Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point, SIAM J. Numer. Anal. 33 (1996), no. 2, 505 – 521. · Zbl 0855.65115
[18] A. H. Schatz and L. B. Wahlbin, On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions, Math. Comp. 40 (1983), no. 161, 47 – 89. · Zbl 0518.65080
[19] Christoph Schwab and Manil Suri, The \? and \?\? versions of the finite element method for problems with boundary layers, Math. Comp. 65 (1996), no. 216, 1403 – 1429. · Zbl 0853.65115
[20] G.I. Shishkin, Discrete approximation of singularly perturbed elliptic and parabolic problems (in Russian), Russian Academy of Sciences, Ural Section, Ekaterinburg, 1992. · Zbl 1397.65005
[21] Martin Stynes and Eugene O’Riordan, A uniformly convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem, J. Math. Anal. Appl. 214 (1997), no. 1, 36 – 54. · Zbl 0917.65088
[22] P. G. Ciarlet and J.-L. Lions , Handbook of numerical analysis. Vol. II, Handbook of Numerical Analysis, II, North-Holland, Amsterdam, 1991. Finite element methods. Part 1. · Zbl 0712.65091
[23] Lars B. Wahlbin, Superconvergence in Galerkin finite element methods, Lecture Notes in Mathematics, vol. 1605, Springer-Verlag, Berlin, 1995. · Zbl 0826.65092
[24] Z. Zhang, Superconvergent approximation of singularly perturbed problems, Numer. Meth. PDEs 18 (2002), 374-395. · Zbl 1002.65088
[25] G. Zhou, How accurate is the streamline diffusion finite element method? Math. Comp. 66 (1997), 31-44. · Zbl 0854.65094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.