Charged black hole solutions in Einstein-Born-Infeld gravity with a cosmological constant. (English) Zbl 1019.83009

Summary: We construct black hole solutions to Einstein-Born-Infeld gravity with a cosmological constant. Since an elliptic function appears in the solutions for the metric, we construct horizons numerically. The causal structure of these solutions differs drastically from their counterparts in Einstein-Maxwell gravity with a cosmological constant. The charged de-Sitter black holes can have up to three horizons and the charged anti-de Sitter black hole can have one or two depending on the parameters chosen.


83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C57 Black holes
Full Text: DOI arXiv


[1] Born, M. and Infeld, L. (1934). Proc. Roy. Soc. London. A 144, 425. · Zbl 0008.42203
[2] Leigh, R. G. (1989). Mod. Phys. Lett. A 4, 2767.
[3] Fradkin, E. S. and Tseytlin, A. A. (1985). Phys. Lett. B 163, 123. · Zbl 0967.81534
[4] Tseytlin, A. A. (1986). Nucl. Phys. B 276, 391.
[5] Gibbons, G. W. Preprint, hep-th/0106059.
[6] Carroll, S. M. (2001). Living Rev. Rel. 4 1, astro-ph/0004075.
[7] Aharony, O., Gubser, S. S., Maldesena, J. and Ooguri, H. (2000). Phys. Rept. 323, 183-386. · Zbl 1368.81009
[8] Vanzo, L. (1997). Phys. Rev. D 56, 6475-6483.
[9] Hawking, S. and Page, D. (1983). Commun. Math. Phys. 87, 577.
[10] Zannias, T. (1990). Phys. Rev. D 41, 3252.
[11] Rasheed, D. A. Preprint, hep-th/9702087.
[12] Gibbons, G. W. and Hawking, S. W. (1977). Phys. Rev. D 15, 2738.
[13] Gubser, S. S. and Mitra, I. Preprint hep-th/0009126.
[14] Clement, G. and Gal’tsov, D. (2000). Phys. Rev. D 62, 124013.
[15] Romans, L. J. (1992). Nucl. Phys. B 383, 395.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.