×

On the generalized Hamiltonian structure of 3D dynamical systems. (English) Zbl 1020.35533

Summary: The Poisson structures for 3D systems possessing one constant of motion can always be constructed from the solution of a linear PDE. When two constants of the motion are available the problem reduces to a quadrature and the structure functions include an arbitrary function of them.

MSC:

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
35Q99 Partial differential equations of mathematical physics and other areas of application
70H05 Hamilton’s equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arnold, V., Mathematical methods of classical mechanics (1989), Springer: Springer Berlin
[2] Holm, D. D.; Wolf, B., Physica D, 51, 189 (1991)
[3] Puta, M., C. R. Acad. Sci., 318, 679 (1994)
[4] Cairó, L.; Feix, M. R., J. Math. Phys., 33, 2440 (1992)
[5] Grammaticos, B.; Moulin-Ollagnier, J.; Ramani, A.; Strelcyn, J.-M; Wojciechowski, S., Physica A, 163, 683 (1990)
[6] Nutku, Y., Phys. Lett. A, 145, 27 (1990)
[7] Nutku, Y., J. Phys. A, 23, L1145 (1990)
[8] Lorenz, E. N., J. Atmos. Sci., 20, 130 (1963)
[9] Kuś, M., J. Phys. A, 16, L689 (1983)
[10] Giacomini, H. J.; Repetto, C. E.; Zandron, O. P., J. Phys. A, 24, 4567 (1991)
[11] Bountis, T. C.; Ramani, A.; Grammaticos, B.; Dorizzi, B., Physica A, 128, 268 (1984)
[12] Pikovski, A. S.; Rabinovich, M. I., Rev. Math. Phys., 2, 165 (1981)
[13] Rikitake, T., (Proc. Cambridge Phys. Soc., 54 (1957)), 89
[14] Perlick, V., J. Math. Phys., 33, 599 (1992)
[15] Hojman, S. A., J. Phys. A, 24, L249 (1991)
[16] Gümral, H.; Nutku, Y., J. Math. Phys., 34, 5691 (1993)
[17] Lucey, C. A., J. Math. Phys., 29, 2430 (1988)
[18] Haas, F.; Goedert, J., Hamiltonian structure for rescaled integrable Lorenz systems, (Proc. II Encontro Brasileiro de Física dos Plasmas. Proc. II Encontro Brasileiro de Física dos Plasmas, Serra Negra, SP (October 1993)), 118-121
[19] Razavy, M.; Kennedy, F. J., Can. J. Phys., 52, 1532 (1974)
[20] Olver, P. J., (Graduate texts in mathematics, Vol. 107 (1986), Springer: Springer Berlin), Applications of Lie groups to differential equations · Zbl 0591.73024
[21] Haas, F., Formulações de Poisson para sistemas dinâmicos, (Msc. Thesis (August 1994), Instituto de Física da UFRGS: Instituto de Física da UFRGS Porto Alegre)
[22] Goedert, J.; Haas, F.; Hua, D.; Feix, M. R.; Cairó, L., J. Phys. A, 27, 6495 (1994) · Zbl 0848.58022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.