zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamic equations on time scales: A survey. (English) Zbl 1020.39008
The authors present a survey of some basic results concerning dynamic equations on time scales. The study of such objects goes back to {\it S. Hilger} [Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Diss. (1988; Zbl 0695.34001)], who created the calculus of time scales (or, more generally, the calculus of measure chains) in order to unify continuous and discrete analysis. This calculus enables an investigation of dynamic equations that cover as special cases differential equations, difference equations, as well as many other equations, where the domain of an unknown function is a closed subset of reals. The authors give an introduction to the time scale calculus and present some basic properties of elementary functions on time scales, such as exponential, hyperbolic and trigonometric functions. Those are used to solve certain linear dynamic equations of first and second order. They give further basic results (as a variation of constants) for higher order linear equations, and also several examples and applications are considered. Finally, they mention results on the positivity of quadratic functionals and the solvability of Riccati dynamic equations which correspond to self-adjoint equations and, more generally, symplectic dynamic systems. The paper contains an extensive list of related publications.

39A12Discrete version of topics in analysis
39-02Research monographs (functional equations)
37J10Symplectic mappings, fixed points (dynamical systems)
Full Text: DOI
[1] Agarwal, R. P.; Bohner, M.: Quadratic functionals for second order matrix equations on time scales. Nonlinear anal. 33, 675-692 (1998) · Zbl 0938.49001
[2] Agarwal, R. P.; Bohner, M.: Basic calculus on time scales and some of its applications. Results math. 35, No. 1--2, 3-22 (1999) · Zbl 0927.39003
[3] C.D. Ahlbrandt, J. Ridenhour. Putzer algorithms for matrix exponentials, matrix powers, and matrix logarithms, 2000, in preparation. · Zbl 1032.39005
[4] Bézivin, J. P.: Sur LES équations fonctionnelles aux q-différences. Aequationes math. 43, 159-176 (1993)
[5] Bohner, M.; Došlý, O.: Disconjugacy and transformations for symplectic systems. Rocky mountain J. Math. 27, No. 3, 707-743 (1997) · Zbl 0894.39005
[6] Bohner, M.; Eloe, P. W.: Higher order dynamic equations on measure chains: wronskians, disconjugacy, and interpolating families of functions. J. math. Anal. appl. 246, 639-656 (2000) · Zbl 0957.34033
[7] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001. · Zbl 0978.39001
[8] M. Bohner, A. Peterson, First and second order linear dynamic equations on measure chains, J. Differ. Equations Appl. 2001, to appear. · Zbl 0993.39010
[9] F.B. Christiansen, T.M. Fenchel, Theories of Populations in Biological Communities, Lecture Notes in Ecological Studies, vol. 20, Springer, Berlin, 1977. · Zbl 0354.92025
[10] O. Došlý, R. Hilscher, Disconjugacy, transformations and quadratic functionals for symplectic dynamic systems on time scales, J. Differ. Equations Appl. 2001, to appear. · Zbl 0989.34027
[11] S. Hilger, Ein Maß kettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität Würzburg, 1988. · Zbl 0695.34001
[12] Hilger, S.: Analysis on measure chains--a unified approach to continuous and discrete calculus. Results math. 18, 18-56 (1990) · Zbl 0722.39001
[13] S. Hilger, Special functions, Laplace and Fourier transform on measure chains, Dynam. Systems Appl. 8(3--4) (1999) 471--488 (Special Issue on ”Discrete and Continuous Hamiltonian Systems”, edited by R.P. Agarwal and M. Bohner). · Zbl 0943.39006
[14] R. Hilscher, Reid roundabout theorem for symplectic dynamic systems on time scales, Appl. Math. Optim. 2001, to appear. · Zbl 0990.39017
[15] S. Keller, Asymptotisches Verhalten invarianter Faserbündel bei Diskretisierung und Mittelwertbildung im Rahmen der Analysis auf Zeitskalen. Ph.D. thesis, Universität Augsburg, 1999.
[16] Trijtzinsky, W. J.: Analytic theory of linear q-difference equations. Acta math. 61, 1-38 (1933)
[17] Zhang, C.: Sur la sommabilité des séries entières solutions d’équations aux q-différences, I.. CR acad. Sci. Paris sér. I math. 327, 349-352 (1998)