×

1-skeleta, Betti numbers, and equivariant cohomology. (English) Zbl 1020.57013

Let \(G\) be a commutative compact connected Lie group acting on a manifold \(M\). \(M\) is called a GKM manifold if \(M^G\) is finite, \(M\) admits a \(G\)-invariant almost complex structure and its 1-skeleton (the set of all \(p\in M\) with \(\dim G_p\geq \dim G-1\)) is of \(\dim 2\). In view of a theorem due to Goresky, Kottwitz and MacPherson, the 1-skeleton has the structure of a labeled graph \((\Gamma,\alpha)\), and the equivariant cohomology \(H_G(H)\) can be reconstructed from the cohomology ring \(H(\Gamma,\alpha)\) of this graph.
The problem investigated in the paper is wether “topological” results about \(H(\Gamma,\alpha)\) are of a purely combinatorial nature. Two types of GKM manifolds with an affirmative answer to this problem constitute toric varieties and flag varieties. For further studies the authors define an abstract 1-skeleton to be a labeled graph \((\Gamma,\alpha)\) for which \(\alpha\) satisfies simple axioms. Next, the cohomology ring of it is introduced and computed, and a link with the concept of symplectic reduction is pointed out. Some applications are given, e.g. concerning Schubert polynomials. A realization theorem for abstract GKM-skeleta is shown.

MSC:

57S25 Groups acting on specific manifolds
05C90 Applications of graph theory
55N91 Equivariant homology and cohomology in algebraic topology
53D20 Momentum maps; symplectic reduction

References:

[1] M. F. Atiyah, Convexity and commuting Hamiltonians , Bull. London Math. Soc. 14 (1982), 1–15. · Zbl 0482.58013 · doi:10.1112/blms/14.1.1
[2] M. F. Atiyah and R. Bott, The moment map and equivariant cohomology , Topology 23 (1984), 1–28. · Zbl 0521.58025 · doi:10.1016/0040-9383(84)90021-1
[3] N. Berline and M. Vergne, Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante , C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 539–541. · Zbl 0521.57020
[4] I. N. Bernšteĭn, I. M. Gelfand, and S. I. Gelfand, Schubert cells, and the cohomology of the spaces \(G/P\) , Russian Math. Surveys 28 (1973), 1–26.
[5] A. Bialynicki-Birula, Some theorems on actions of algebraic groups , Ann. of Math. (2) 98 (1973), 480–497. JSTOR: · Zbl 0275.14007 · doi:10.2307/1970915
[6] S. Billey, Kostant polynomials and the cohomology ring for \(G/B\) , Duke Math. J. 96 (1999), 205–224. · Zbl 0980.22018 · doi:10.1215/S0012-7094-99-09606-0
[7] S. Billey and M. Haiman, Schubert polynomials for the classical groups , J. Amer. Math. Soc. 8 (1995), 443–482. JSTOR: · Zbl 0832.05098 · doi:10.2307/2152823
[8] A. Borel, Seminar on Transformation Groups , Ann. of Math. Stud. 46 , Princeton Univ. Press, Princeton, 1960. · Zbl 0091.37202
[9] M. Brion and C. Procesi, “Action d’un tore dans une variété projective” in Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989) , Progr. Math. 92 , Birkhäuser, Boston, 1990, 509–539. · Zbl 0741.14028
[10] A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs , Ergeb. Math. Grenzgeb. (3) 18 , Springer, Berlin, 1989. · Zbl 0747.05073
[11] H. Crapo and W. Whiteley, Spaces of stresses, projections and parallel drawings for spherical polyhedra , Beiträge Algebra Geom. 35 (1994), 259–281. · Zbl 0819.52018
[12] T. Delzant, Hamiltoniens périodiques et images convexes de l’application moment , Bull. Soc. Math. France 116 (1988), 315–339. · Zbl 0676.58029
[13] M. Demazure, Désingularisation des variétés de Schubert généralisées , Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88. · Zbl 0312.14009
[14] W. Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas , Duke Math. J. 65 (1992), 381–420. · Zbl 0788.14044 · doi:10.1215/S0012-7094-92-06516-1
[15] ——–, Young Tableaux: With Applications to Representation Theory and Geometry , London Math. Soc. Stud. Texts 35 , Cambridge Univ. Press, Cambridge, 1997. · Zbl 0878.14034
[16] V. Ginzburg, Y. Karshon, and S. Tolman, in preparation.
[17] L. Godinho, Circle actions on symplectic manifolds , Ph.D. dissertation, State University of New York at Stony Brook, 1999. · Zbl 1108.53051
[18] M. Goresky, R. Kottwitz, and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem , Invent. Math. 131 (1998), 25–83. · Zbl 0897.22009 · doi:10.1007/s002220050197
[19] V. Guillemin, T. Holm, and C. Zara, GKM-theory on homogeneous manifolds , in preparation. · Zbl 1096.53050
[20] V. Guillemin and S. Sternberg, Convexity properties of the moment mapping , Invent. Math. 67 (1982), 491–513. · Zbl 0503.58017 · doi:10.1007/BF01398933
[21] –. –. –. –., Birational equivalence in the symplectic category , Invent. Math. 97 (1989), 485–522. · Zbl 0683.53033 · doi:10.1007/BF01388888
[22] ——–, Supersymmetry and Equivariant de Rham Theory , Math. Past Present, Springer, Berlin, 1999. · Zbl 0934.55007
[23] V. Guillemin and C. Zara, Equivariant de Rham theory and graphs , Asian J. Math. 3 (1999), 49–76. · Zbl 0971.58001
[24] J. Humphreys, Reflection Groups and Coxeter Groups , Cambridge Stud. Adv. Math. 29 , Cambridge Univ. Press, Cambridge, 1990. · Zbl 0725.20028
[25] N. Jacobson, Cayley numbers and normal simple Lie algebras of type \(G\) , Duke Math. J. 5 (1939), 775–783. · Zbl 0022.19801 · doi:10.1215/S0012-7094-39-00562-4
[26] F. C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry , Math. Notes 31 , Princeton Univ. Press, Princeton, 1984. · Zbl 0553.14020
[27] A. A. Klyachko, Equivariant bundles over toric varieties , Math. USSR-Izv. 35 (1990), no. 2, 337–375. · Zbl 0706.14010 · doi:10.1070/IM1990v035n02ABEH000707
[28] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II , Interscience Tracts in Pure Appl. Math. 15 , Interscience, New York, 1969. · Zbl 0175.48504
[29] B. Kostant and S. Kumar, The nil Hecke ring and cohomology of \(G/P\) for a Kac-Moody group \(G\) , Adv. in Math. 62 (1986), 187–237. · Zbl 0641.17008 · doi:10.1016/0001-8708(86)90101-5
[30] A. Lascoux and M.-P. Schützenberger, Schubert polynomials and the Littlewood-Richardson rule , Lett. Math. Phys. 10 (1985), 111–124. · Zbl 0586.20007 · doi:10.1007/BF00398147
[31] E. Lerman, Symplectic cuts , Math. Res. Lett. 2 (1995), 247–258. · Zbl 0835.53034 · doi:10.4310/MRL.1995.v2.n3.a2
[32] E. Lerman and S. Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties , Trans. Amer. Math. Soc. 349 (1997), 4201–4230. JSTOR: · Zbl 0897.58016 · doi:10.1090/S0002-9947-97-01821-7
[33] B. H. Lian, K. Liu, and S.-T. Yau, “Mirror principle: A survey” in Current Developments in Mathematics (Cambridge, Mass., 1998) , International Press, Boston, 1998, 35–65.
[34] I. G. Macdonald, “Schubert polynomials” in Surveys in Combinatorics (Guildford, U.K., 1991) , London Math. Soc. Lecture Note Ser. 166 , Cambridge Univ. Press, Cambridge, 1991, 73–99.
[35] D. McDuff, Examples of simply-connected symplectic non-Kählerian manifolds , J. Differential Geom. 20 (1984), 267–277. · Zbl 0567.53031
[36] E. Meinrenken, Symplectic surgery and the Spin\(^c\) -Dirac operator , Adv. Math. 134 (1998), 240–277. · Zbl 0929.53045 · doi:10.1006/aima.1997.1701
[37] R. P. Stanley, Combinatorics and Commutative Algebra , Progr. Math. 41 , Birkhäuser, Boston, 1983. · Zbl 0537.13009
[38] S. Tolman and J. Weitsman, The cohomology rings of abelian symplectic quotients , preprint, http://www.arXiv.org/abs/math.DG/9807173. · Zbl 1087.53076
[39] –. –. –. –., “On the cohomology rings of Hamiltonian T-spaces” in Northern California Symplectic Geometry Seminar , Amer. Math. Soc. Transl. Ser. 2 196 , Amer. Math. Soc., Providence, 1999, 251–258.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.