×

A unified jackknife theory for empirical best prediction with \(M\)-estimation. (English) Zbl 1020.62025

Summary: The paper presents a unified jackknife theory for a fairly general class of mixed models which includes some of the widely used mixed linear models and generalized linear mixed models as special cases. The paper develops jackknife theory for the important, but so far neglected, prediction problem for the general mixed model. For estimation of fixed parameters, a jackknife method is considered for a general class of \(M\)-estimators which includes the maximum likelihood, residual maximum likelihood and ANOVA estimators for mixed linear models and the recently developed method of simulated moments estimators for generalized linear mixed models.
For both the prediction and estimation problems, a jackknife method is used to obtain estimators of the mean squared errors (MSE). Asymptotic unbiasedness of the MSE estimators is shown to hold essentially under certain moment conditions. Simulation studies undertaken support our theoretical results.

MSC:

62F40 Bootstrap, jackknife and other resampling methods
62G09 Nonparametric statistical resampling methods
62J10 Analysis of variance and covariance (ANOVA)
62J12 Generalized linear models (logistic models)

Software:

bootstrap
Full Text: DOI

References:

[1] ARVESEN, J. N. (1969). Jackknifing U-statistics. Ann. Math. Statist. 40 2076-2100. · Zbl 0193.16403 · doi:10.1214/aoms/1177697287
[2] BATTESE, G. E., HARTER, R. M. and FULLER, W. A. (1988). An error-components model for prediction of county crop areas using survey and satellite data. J. Amer. Statist. Assoc. 83 28-36.
[3] BRESLOW, N. E. and CLAy TON, D. G. (1993). Approximate inference in generalized linear mixed models. J. Amer. Statist. Assoc. 88 9-25. · Zbl 0775.62195 · doi:10.2307/2290687
[4] BUTAR, F. B. (1997). Empirical Bay es methods in survey sampling. Ph.D. dissertation, Dept. Mathematics and Statistics, Univ. Nebraska-Lincoln.
[5] CHATTOPADHy AY, M., LAHIRI, P., LARSEN, M. and REIMNITZ, J. (1999). Composite estimation of drug prevalences for sub-state areas. Survey Methodology 25 81-86.
[6] DATTA, G. S. and LAHIRI, P. (2000). A unified measure of uncertainty of estimated best linear unbiased predictors in small area estimation problems. Statist. Sinica 10 613-627. · Zbl 1054.62566
[7] EFRON, B. and MORRIS, C. (1973). Stein’s estimation rule and its competitors: An empirical Bay es approach. J. Amer. Statist. Assoc. 68 117-130. JSTOR: · Zbl 0275.62005 · doi:10.2307/2284155
[8] EFRON, B. and MORRIS, C. (1975). Data analysis using Stein’s estimator and its generalizations. J. Amer. Statist. Assoc. 70 311-319. JSTOR: · Zbl 0319.62018 · doi:10.2307/2285814
[9] EFRON, B. and TIBSHIRANI, R. J. (1993). An Introduction to the Bootstrap. Chapman and Hall, London. · Zbl 0835.62038
[10] ERICSON, W. A. (1969). A note on the posterior mean of a population mean. J. Roy. Statist. Soc. Ser. B 31 332-334. JSTOR:
[11] FAY, R. E. and HERRIOT, R. A. (1979). Estimates of income for small places: An application of James-Stein procedures to census data. J. Amer. Statist. Assoc. 74 269-277. · doi:10.2307/2286322
[12] GHOSH, M. and LAHIRI, P. (1987). Robust empirical Bay es estimation of means from stratified samples. J. Amer. Statist. Assoc. 82 1153-1162. JSTOR: · doi:10.2307/2289394
[13] GHOSH, M. and MEEDEN, G. (1986). Empirical Bay es estimation in finite population sampling. J. Amer. Statist. Assoc. 81 1058-1062. JSTOR: · Zbl 0616.62012 · doi:10.2307/2289083
[14] HUBER, P. J. (1981). Robust Statistics. Wiley, New York. · Zbl 0536.62025
[15] JIANG, J. (1996). REML estimation: Asy mptotic behavior and related topics. Ann. Statist. 24 255-286. · Zbl 0853.62022 · doi:10.1214/aos/1033066209
[16] JIANG, J. (1998). Consistent estimators in generalized linear mixed models. J. Amer. Statist. Assoc. 93 720-729. JSTOR: · Zbl 0926.62051 · doi:10.2307/2670122
[17] JIANG, J. (1999). Jackknifing MSE of empirical best predictor: A theoretical sy nthesis. Technical report, Dept. Statist., Case Western Reserve Univ.
[18] JIANG, J. and LAHIRI, P. (2001). Empirical best prediction for small area inference with binary data. Ann. Inst. Statist. Math. 53 217-243. · Zbl 1027.62012 · doi:10.1023/A:1012410420337
[19] LAHIRI, P. (1995). A jackknife measure of uncertainty of linear empirical Bay es estimators. Unpublished manuscript.
[20] LAHIRI, P. and RAO, J. N. K. (1995). Robust estimation of mean squared error of small area estimators. J. Amer. Statist. Assoc. 90 758-766. JSTOR: · Zbl 0826.62008 · doi:10.2307/2291089
[21] LAIRD, N. M. and LOUIS, T. A. (1987). Empirical Bay es confidence intervals based on bootstrap samples (with discussion). J. Amer. Statist. Assoc. 82 739-757. JSTOR: · Zbl 0643.62018 · doi:10.2307/2288778
[22] LEE, Y. and NELDER, J. A. (1996). Hierarchical generalized linear models (with discussion). J. Roy. Statist. Soc. Ser. B 58 619-678. JSTOR: · Zbl 0880.62076
[23] LEHMANN, E. L. (1983). Theory of Point Estimation. Wiley, New York. · Zbl 0522.62020
[24] MALEC, D., SEDRANSK, J., MORIARITY, C. L. and LE CLERE, F. B. (1997). Small area inference for binary variables in the National Health Interview Survey. J. Amer. Statist. Assoc. 92 815-826. · Zbl 0889.62005 · doi:10.2307/2965546
[25] MCFADDEN, D. (1989). A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica 57 995-1026. JSTOR: · Zbl 0679.62101 · doi:10.2307/1913621
[26] MORRIS, C. N. (1983). Parametric empirical Bay es inference: Theory and applications. J. Amer. Statist. Assoc. 78 47-59. JSTOR: · Zbl 0506.62005 · doi:10.2307/2287098
[27] PRASAD, N. G. N. and RAO, J. N. K. (1988). Robust tests and confidence intervals for error variance in a regression model and for functions of variance components in an unbalanced random one-way model. Comm. Statist. Theory Methods 17 1111-1133. · Zbl 0656.62079 · doi:10.1080/03610928808829674
[28] PRASAD, N. G. N. and RAO, J. N. K. (1990). The estimation of mean squared errors of small area estimators. J. Amer. Statist. Assoc. 85 163-171. JSTOR: · Zbl 0719.62064 · doi:10.2307/2289539
[29] RAO, J. N. K. and PRASAD, N. G. N. (1986). Discussion of ”Jackknife, bootstrap and other resampling methods in regression analysis,” by C. F. J. Wu. Ann. Statist. 14 1320-1322. · Zbl 0618.62072 · doi:10.1214/aos/1176350142
[30] SEARLE, S. R., CASELLA, G. and MCCULLOCH, C. E. (1992). Variance Components. Wiley, New York. · Zbl 0850.62007
[31] SHAO, J. and TU, D. (1995). The Jackknife and Bootstrap. Springer, New York. · Zbl 0947.62501
[32] DAVIS, CALIFORNIA 95616 E-MAIL: jiang@wald.ucdavis.edu P. LAHIRI JOINT PROGRAM IN SURVEY METHODOLOGY UNIVERSITY OF MARy LAND 1218 LEFRAK HALL COLLEGE PARK, MARy LAND 20742 E-MAIL: plahiri@survey.umd.edu S.-M. WAN DEPARTMENT OF FINANCE LUNGHWA UNIVERSITY OF SCIENCE AND TECHNOLOGY 300, WAN-SO ROAD, SEC. 1, KWEI-SAN SHANG TOU-YUANG COUNTY TAIWAN, REPUBLIC OF CHINA 333
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.