×

Monopoles, duality and chiral symmetry breaking in \(N=2\) supersymmetric QCD. (English) Zbl 1020.81911

Summary: We study four dimensional \(N = 2\) supersymmetric gauge theories with matter multiplets. For all such models for which the gauge group is \(\text{SU}(2)\), we derive the exact metric on the moduli space of quantum vacua and the exact spectrum of the stable massive states. A number of new physical phenomena occur, such as chiral symmetry breaking that is driven by the condensation of magnetic monopoles that carry global quantum numbers. For those cases in which conformal invariance is broken only by mass terms, the formalism automatically gives results that are invariant under electric-magnetic duality. In one instance, this duality is mixed in an interesting way with \(\text{SO}(8)\) triality.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81R40 Symmetry breaking in quantum theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81V05 Strong interaction, including quantum chromodynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Shifman, M. A.; Vainshtein, A. I., Nucl. Phys. B, 359, 571 (1991)
[2] Amati, D.; Konishi, K.; Meurice, Y.; Rossi, G. C.; Veneziano, G., Phys. Rep., 162, 169 (1988), and references therein
[3] Seiberg, N., Phys. Lett. B, 318, 469 (1993)
[4] Seiberg, N., Phys. Rev. D, 49, 6857 (1994), hep-th/9402044
[5] Intriligator, K.; Leigh, R.; Seiberg, N., Phys. Rev. D, 50, 1092 (1994), hep-th/9403198
[7] De Wit, B.; Van Proeyen, A., Nucl. Phys. B, 245, 89 (1984)
[8] Seiberg, N., Phys. Lett. B, 206, 75 (1988)
[10] Affleck, I.; Dine, M.; Seiberg, N., Nucl. Phys. B, 256, 557 (1985)
[11] Prasad, M. K.; Sommerfield, C. M., Phys. Rev. Lett., 35, 760 (1975)
[12] Bogomol’nyi, E. B., Sov. J. Nucl. Phys., 24, 449 (1976)
[13] Witten, E.; Olive, D., Phys. Lett. B, 78, 97 (1978)
[14] Fradkin, E.; Shenker, S., Phys. Rev. D, 19, 3682 (1979)
[15] Goddard, P.; Nuyts, J.; Olive, D., Nucl. Phys. B, 125, 1 (1977)
[16] Cardy, J., Nucl. Phys. B, 205, 17 (1982)
[17] Shapere, A.; Wilczek, F., Nucl. Phys. B, 320, 669 (1989)
[19] Wess, J.; Bagger, J., Supersymmetry and supergravity (1982), Princeton Univ. Press: Princeton Univ. Press Princeton
[20] Jackiw, R.; Rebbi, C., Phys. Rev. D, 13, 3398 (1976)
[21] Nohl, C. R., Phys. Rev. D, 12, 1840 (1975)
[22] Atiyah, M. F.; Hitchin, N. J., The geometry and dynamics of magnetic monopoles (1988), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 0671.53001
[23] Witten, E., Phys. Lett. B, 86, 283 (1979)
[24] Cecotti, S.; Vafa, C., Commun. Math. Phys., 158, 569 (1993) · Zbl 0787.58049
[25] Manton, N. S.; Schroers, B. J., Ann. Phys., 225, 290 (1993) · Zbl 0778.53057
[26] Koblitz, N., Introduction to elliptic curves and modular forms (1984), Springer: Springer Berlin · Zbl 0553.10019
[27] Chandrasekharan, K., Elliptic functions (1985), Springer: Springer Berlin · Zbl 0575.33001
[28] Hubsch, T., Calabi-Yau manifolds: A bestiary for physicists (1992), World-Scientific: World-Scientific Singapore · Zbl 0771.53002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.