Petersson products of modular forms associated with the values of \(L\)-functions. (Produits de Petersson de formes modulaires associées aux valeurs de fonctions \(L\).) (French) Zbl 1021.11016

Let \(p\) be a prime, \(\chi \) a Dirichlet character \(\pmod{p}\), \(f(z)=\sum_{n=1}^{\infty }a_ne^{2\pi inz}\) a cusp form of weight 2 for the congruence group \(\Gamma _0(p)\), and \(L(f,\chi ,s) = \sum_{n=1}^{\infty }\chi (n)a_nn^{-s}\) the corresponding \(L\)-function twisted with the character \(\chi \). The mapping \(f\mapsto L(f,\chi ,1)\), which is a linear form in the space \(S_2(\Gamma _0(p))\), can be represented as the inner product against a certain unique form \(h_{\chi }\in S_2(\Gamma _0(p))\), thus \(L(f, \chi ,1)=(f, h_{\chi })\). The main result in this paper is an identity for the inner product \((h_{\chi }, h_{\chi '})\) if \(\chi \) and \(\chi '\) are non-trivial characters of different parity. This identity involves Gauss sums and values of Dirichlet \(L\)-functions at \(s=1\).


11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
Full Text: DOI Numdam EuDML


[1] Iwaniec, H., Topic in Classical Automorphic Forms. American Mathematical Society, 1997. · Zbl 0905.11023
[2] Kohnen, W., Zagier, D., Modular forms with rational periods. Modular Forms (Robert A. Rankin, ed.), Ellis Horwood Limited, 1984. · Zbl 0618.10019
[3] Lang, S., Introduction to Algebraic and Abelian Functions (Second edition). Springer Verlag, 1982. · Zbl 0513.14024
[4] Lang, S., Cyclotomic Fields I and II (Combined Second Edition). Springer Verlag, 1990.
[5] Merel, L., Sur la nature non-cyclotomique des points d’ordre fini des courbes elliptiques. · Zbl 1020.11041
[6] Merel, L., Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math.124 (1996). · Zbl 0936.11037
[7] Ogg, A., Modular Forms and Dirichlet Series. W. A. Benjamin, Inc, 1969. · Zbl 0191.38101
[8] Griffiths, P., Harris, J., Principles of Algebraic Geometry. Wiley-Interscience, 1978. · Zbl 0408.14001
[9] Serre, J-P., Cours d’Arithmétique. PUF, 1970. · Zbl 0225.12002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.