×

zbMATH — the first resource for mathematics

Jensen measures and boundary values of plurisubharmonic functions. (English) Zbl 1021.32014
For a bounded domain \(\Omega\), let \({\mathcal J}_z^c\) and \({\mathcal J}_z\) denote the collections of all Jensen measures with barycentre \(z\in\overline\Omega\) for continuous (resp., upper bounded) plurisubharmonic functions in \(\Omega\). It is shown that \({\mathcal J}_z\) can be a proper subset of \({\mathcal J}_z^c\), however these two classes coincide for all B-regular domains \(\Omega\). The proof of the latter result is based on an approximation theorem for upper bounded plurisubharmonic functions in a B-regular domain \(\Omega\) by continuous plurisubharmonic functions on \(\overline\Omega\). Conversely, if a bounded hyperconvex domain \(\Omega\) is such that \({\mathcal J}_z ={\mathcal J}_z^c\) for all \(z\), then \(\Omega\) possesses this approximation property. The author gives also an exact characterization, in terms of Jensen measures, of those continuous functions on \(\partial\Omega\) that are boundary values of continuous plurisubharmonic functions.

MSC:
32U05 Plurisubharmonic functions and generalizations
46E27 Spaces of measures
31C10 Pluriharmonic and plurisubharmonic functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Błocki, Z., The complex Monge-Ampère operator in hyperconvex domains,Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23 (1996), 721–747. · Zbl 0878.31003
[2] Carlehed, M., Cegrell, U. andWikström, F., Jensen measures, hyperconvexity and boundary behaviour of the pluricomplex Green function,Ann. Polon. Math. 71 (1999), 87–103. · Zbl 0955.32034
[3] Cegrell, U.,Capacities in Complex Analysis, Vieweg, Braunschweig, 1988. · Zbl 0655.32001
[4] Cegrell, U., Approximation of plurisubharmonic functions and integration by parts,Preprint, 1998.
[5] Demailly, J.-P., Mesures de Monge-Ampère et mesures pluriharmoniques,Math. Z. 194 (1987), 519–564. · Zbl 0595.32006 · doi:10.1007/BF01161920
[6] Edwards, D. A., Choquet boundary theory for certain spaces of lower semicontinuous functions, inFunction Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965) (Birtel, F., ed.), pp. 300–309, Scott-Foresman, Chicago, Ill., 1966.
[7] Fornæss, J. E. andNarasimhan, R., The Levi problem on complex spaces with singularities,Math. Ann. 248 (1980), 47–72. · Zbl 0422.32013 · doi:10.1007/BF01349254
[8] Fornæss, J. E. andStensønes, B.,Lectures on Counterexamples in Several Complex Variables, Princeton Univ. Press, Princeton, N. J., 1987. · Zbl 1126.32001
[9] Lárusson, F. andSigurdsson, R., Plurisubharmonic functions and analytic discs on manifolds,J. Reine Angew. Math. 501 (1998), 1–39. · Zbl 0901.31004
[10] Poletsky, E. A., Plurisubharmonic functions as solutions of variational problems, inSeveral Complex Variables and Complex Geometry, Part 1 (Santa Cruz, Calif., 1989) (Bedford, E., D’Angelo, J. P., Greene, R. E. and Krantz, S. G., (eds.), pp. 163–171. Amer. Math. Soc., Providence, R. I., 1991.
[11] Poletsky, E. A., Holomorphic currents,Indiana Univ. Math. J. 42 (1993), 85–144. · Zbl 0811.32010 · doi:10.1512/iumj.1993.42.42006
[12] Sibony, N., Une classe de domaines pseudoconvexes,Duke Math. J. 55 (1987), 299–319. · Zbl 0622.32016 · doi:10.1215/S0012-7094-87-05516-5
[13] Walsh, J. B., Continuity of envelopes of plurisubharmonic functions,J. Math. Mech. 18 (1968/1969), 143–148. · Zbl 0159.16002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.