×

On the Cauchy problem for a nonlinearly dispersive wave equation. (English) Zbl 1021.35100

Summary: We establish the local well-posedness for a new nonlinearly dispersive wave equation \[ u_t-u_{txx}+2\omega u_x+3uu_x=\gamma(2u_xu_{xx}+uu_{xxx}),\quad t>0,\;x\in\mathbb{R}, \] and we show that the equation has solutions that exist for indefinite times as well as solutions which blowup in finite time. Furthermore, we derive an explosion criterion for the equation and we give a sharp estimate from below for the existence time of solutions with smooth initial data.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Beals R, Adv. Math. 140 pp 190– (1998) · Zbl 0919.35118
[2] Benjamin T B, Phil. Trans. R. Soc. (London) 272 pp 47– (1972) · Zbl 0229.35013
[3] Camassa R, Phys. Rev. Lett. 71 pp 1661– (1993) · Zbl 0972.35521
[4] Constantin A, Exposition. Math. 15 pp 53– (1997)
[5] Constantin A, Ann. Inst. Fourier (Grenoble) 50 pp 321– (2000)
[6] Constantin A, Proc. R. Soc. London 457 pp 953– (2001) · Zbl 0999.35065
[7] Constantin A, Ann. Sc. Norm. Sup. Pisa 26 pp 303– (1998)
[8] Constantin A, Acta Mathematica 181 pp 229– (1998) · Zbl 0923.76025
[9] Constantin A, Phys. Lett. 270 pp 140– (2000) · Zbl 1115.74339
[10] Dai H H, Acta Mech. 127 pp 193– (1998) · Zbl 0910.73036
[11] Dai H H, Proc. R. Soc. London 456 pp 331– (2000) · Zbl 1004.74046
[12] Danchin R, Differential and Integral Equa-tions 14 pp 953– (2001)
[13] Dodd R K, Solitons and Nonlinear Wave Equations (1984)
[14] Fokas A, Physica 4 pp 47– (1981)
[15] Himonas A A, Differential and Integral Equations 14 pp 821– (2001)
[16] Johnson R S, J. Fluid. Mech. 457 pp 63– (2002)
[17] Kato T Quasi-Linear Equations of Evolution, with Applications to Partial Differential Equations, in Spectral Theory and Differential Equations,Lecture Notes in Math., Vol. 448, Springer Verlag, Berlin, 1975, 25–70
[18] Lenells J, J. Nonlinear Math. Phys. 9 pp 389– (2002) · Zbl 1014.35082
[19] Li Y, J. Differential Equations 162 pp 27– (2000) · Zbl 0958.35119
[20] Rodriguez-Blanco G, Nonlinear Anal. 46 pp 309– (2001) · Zbl 0980.35150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.