×

On the stability of the linear mapping in Banach modules. (English) Zbl 1021.46037

Summary: We prove the generalized Hyers-Ulam-Rassias stability of the linear mapping in Banach modules over a unital Banach algebra.

MSC:

46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bonsall, F.; Duncan, J., Complete Normed Algebras (1973), Springer-Verlag: Springer-Verlag New York · Zbl 0271.46039
[2] Gajda, Z., On stability of additive mappings, Internat. J. Math. Math. Sci., 14, 431-434 (1991) · Zbl 0739.39013
[3] Găvruta, P., A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184, 431-436 (1994) · Zbl 0818.46043
[4] Hyers, D. H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27, 222-224 (1941) · Zbl 0061.26403
[5] Hyers, D. H.; Isac, G.; Rassias, Th. M., Stability of Functional Equations in Several Variables (1998), Birkhäuser: Birkhäuser Berlin · Zbl 0894.39012
[6] Jun, K.; Lee, Y., A generalization of the Hyers-Ulam-Rassias stability of Pexider equation, J. Math. Anal. Appl., 246, 627-638 (2000) · Zbl 0957.39008
[7] Rassias, Th. M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72, 297-300 (1978) · Zbl 0398.47040
[8] Rassias, Th. M., On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251, 264-284 (2000) · Zbl 0964.39026
[10] Schröder, H., \(K\)-Theory for Real
((C^∗\)-Algebras and Applications. \(K\)-Theory for Real
((C^∗\)-Algebras and Applications, Pitman Res. Notes Math. Ser., 290 (1993), Longman: Longman Essex · Zbl 0785.46056
[11] Skof, F., Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53, 113-129 (1983)
[12] Ulam, S. M., Problems in Modern Mathematics (1960), Wiley: Wiley New York · Zbl 0137.24201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.