Friesecke, Gero; James, Richard D.; Müller, Stefan A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. (English) Zbl 1021.74024 Commun. Pure Appl. Math. 55, No. 11, 1461-1506 (2002). Summary: The energy functional of nonlinear plate theory is a curvature functional for surfaces first proposed on physical grounds by G. Kirchhoff in 1850. We show that it arises as a \(\Gamma\)-limit of three-dimensional nonlinear elasticity theory as the thickness of a plate goes to zero. A key ingredient in the proof is a sharp rigidity estimate for maps \(v:U \to\mathbb{R}^n\), \(U\subset \mathbb{R}^n\). We show that the \(L^2\)-distance of \(\Delta v\) from a single rotation matrix is bounded by a multiple of the \(L^2\)-distance from from the group \(\text{SO}(n)\) of all rotations. Cited in 17 ReviewsCited in 380 Documents MSC: 74K20 Plates 74B20 Nonlinear elasticity 74G65 Energy minimization in equilibrium problems in solid mechanics 35Q72 Other PDE from mechanics (MSC2000) Keywords:geometric rigidity; nonlinear plate theory; energy functional; curvature functional; three-dimensional nonlinear elasticity theory; rigidity estimate; rotation matrix × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Alt, Lineare Funktionalanalysis (1999) [2] Antman, Applied Mathematical Sciences 107, in: Nonlinear problems of elasticity (1995) [3] Anzellotti, Dimension reduction in variational problems, asymptotic development in {\(\Gamma\)}-convergence and thin structures in elasticity, Asymptotic Anal 9 (1) pp 61– (1994) · Zbl 0811.49020 [4] Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch Rational Mech Anal 63 (4) pp 337– (1976) · Zbl 0368.73040 · doi:10.1007/BF00279992 [5] Ben Amar, Crumpled paper, Proc Roy Soc London Ser A 453 (1959) pp 729– (1997) [6] Ben Belgacem, Rigorous bounds for the Föppl-von Kármán theory of isotropically compressed plates, J Nonlinear Sci 10 (6) pp 661– (2000) · Zbl 1015.74029 · doi:10.1007/s003320010007 [7] Bennett, Pure and Applied Mathematics 129, in: Interpolation of operators (1988) [8] Bhattacharya, A theory of thin films of martensitic materials with applications to microactuators, J Mech Phys Solids 47 (3) pp 531– (1999) · Zbl 0960.74046 · doi:10.1016/S0022-5096(98)00043-X [9] Braides , A. {\(\Gamma\)}-convergence for beginners [10] Cerda, Conical dislocations in crumpling, Nature 401 pp 46– (1999) · doi:10.1038/43395 [11] Ciarlet, Mathematical elasticity II, in: Theory of plates (1997) [12] Dal Maso, Progress in Nonlinear Differential Equations and Their Applications 8, in: An introduction to {\(\Gamma\)}-convergence (1993) · Zbl 0816.49001 [13] De Giorgi, Su un tipo di convergenza variazionale, Atti Accad Naz Lincei Rend Cl Sci Fis Mat Natur (8) 58 (6) pp 842– (1975) [14] DiDonna, Singularities, structures, and scaling in deformed m-dimensional elastic manifolds, Phys Rev E (3) 65 (1) (2002) [15] Dolzmann, Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side, J Reine Angew Math 520 pp 1– (2000) · Zbl 0937.35065 [16] Euler, Lausanne 1744, in: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti pp 231– (1967) · Zbl 0788.01072 [17] Evans, Studies in Advanced Mathematics (1992) [18] Fonseca, 3D-2D asymptotic analysis of an optimal design problem for thin films, J Reine Angew Math 505 pp 173– (1998) · Zbl 0917.73052 [19] Friesecke, Derivation of nonlinear bending theory for shells from three dimensional nonlinear elasticity by {\(\Gamma\)}-convergence, C. R. Acad. Sci. Paris · Zbl 1140.74481 [20] Friesecke, Rigorous derivation of nonlinear plate theory and geometric rigidity, C R Math Acad Sci Paris 334 (2) pp 173– (2002) · Zbl 1012.74043 [21] Gioia, Delamination of compressed thin films, Adv Appl Mech 33 pp 119– (1997) · Zbl 0930.74024 [22] James, Lecture Notes in Physics 344, in: PDEs and continuum models of phase transitions pp 51– (1989) [23] Jin, Energy estimates for the von Kármán model of thin-film blistering, J Math Phys 42 (1) pp 192– (2001) · Zbl 1028.74036 · doi:10.1063/1.1316058 [24] John, Rotation and strain, Comm Pure Appl Math 14 pp 391– (1961) · Zbl 0102.17404 [25] John , F. Bounds for deformations in terms of average strains Inequalities III 129 144 Academic New York 1972 [26] Kirchhoff, Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, J Reine Angew Math 40 pp 51– (1850) · ERAM 040.1086cj [27] Kohn, New integral estimates for deformations in terms of their nonlinear strains, Arch Rational Mech Anal 78 (2) pp 131– (1982) · Zbl 0491.73023 [28] Kufner, Weighted Sobolev spaces (1985) [29] Le Dret, Le modèle de membrane non linéaire comme limite variationnelle de l’élasticité non linéaire tridimensionnelle, C R Acad Sci Paris Sér I Math 317 (2) pp 221– (1993) [30] Le Dret, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J Math Pures Appl (9) 74 (6) pp 549– (1995) · Zbl 0847.73025 [31] Le Dret, The membrane shell model in nonlinear elasticity: a variational asymptotic derivation, J Nonlinear Sci 6 (1) pp 59– (1996) · Zbl 0844.73045 · doi:10.1007/BF02433810 [32] Lewis, Uniformly fat sets, Trans Amer Math Soc 308 (1) pp 177– (1988) · Zbl 0668.31002 [33] Li, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent Math 69 (2) pp 269– (1982) · Zbl 0503.53042 [34] Liu, A Luzin type property of Sobolev functions, Indiana Univ Math J 26 (4) pp 645– (1977) · Zbl 0368.46036 [35] Lobkovsky, Boundary layer analysis of the ridge singularity in a thin plate, Phys Rev E 53 pp 3750– (1996) · doi:10.1103/PhysRevE.53.3750 [36] Love, A treatise on the mathematical theory of elasticity (1927) · JFM 53.0752.01 [37] Müller, On surfaces of finite total curvature, J Differential Geom 42 (2) pp 229– (1995) · Zbl 0853.53003 · doi:10.4310/jdg/1214457233 [38] Nečas, Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle, Ann Scuola Norm Sup Pisa (3) 16 pp 305– (1962) [39] Ortiz, The morphology and folding patterns of buckling-driven thin-film blisters, J Mech Phys Solids 42 (3) pp 531– (1994) · Zbl 0832.73051 · doi:10.1016/0022-5096(94)90030-2 [40] Pantz, Une justification partielle du modèle de plaque en flexion par {\(\Gamma\)}-convergence, C R Acad Sci Paris Sér I Math 332 (6) pp 587– (2001) [41] Rešetnjak, Liouville’s conformal mapping theorem under minimal regularity hypotheses, Sibirsk Mat Ž 8 pp 835– (1967) [42] Simon, Existence of surfaces minimizing the Willmore functional, Comm Anal Geom 1 (2) pp 281– (1993) · Zbl 0848.58012 [43] Stein, Princeton Mathematical Series 30, in: Singular integrals and differentiability properties of functions (1970) [44] Willmore, Ellis Horwood Series: Mathematics and Its Applications, in: Total curvature in Riemannian geometry (1982) [45] Zhang, A construction of quasiconvex functions with linear growth at infinity, Ann Scuola Norm Sup Pisa Cl Sci (4) 19 (3) pp 313– (1992) [46] Ziemer, Graduate Texts in Mathematics 120, in: Weakly differentiable functions. Sobolev spaces and functions of bounded variation (1989) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.