zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global dynamics of an SEIR epidemic model with saturating contact rate. (English) Zbl 1021.92040
Summary: {\it J. A. P. Heesterbeek} and {\it J. A. P. Metz} [J. Math. Biol. 31, 529-539 (1993; Zbl 0770.92021)] derived an expression for the saturating contact rate of individual contacts in an epidemiological model. In this paper, the SEIR model with this saturating contact rate is studied. The basic reproduction number $R_0$ is proved to be a sharp threshold which completely determines the global dynamics and the outcome of the disease. If $R_0\leq 1$, the disease-free equilibrium is globally stable and the disease always dies out. If $R_0>1$, there exists a unique endemic equilibrium which is globally stable and the disease persists at an endemic equilibrium state if it initially exists. The contribution of the saturating contact rate to the basic reproduction number and the level of the endemic equilibrium are also analyzed.

MSC:
92D30Epidemiology
34D23Global stability of ODE
34D05Asymptotic stability of ODE
WorldCat.org
Full Text: DOI
References:
[1] Heesterbeek, J. A. P.; Metz, J. A. J.: The saturating contact rate in marriage and epidemic models. J. math. Biol. 31, 529 (1993) · Zbl 0770.92021
[2] Thieme, H. R.; Castillo-Chavez, C.: On the role of variable infectivity in the dynamics of the human immunodeficiency virus epidemic. Lecture notes in biomathematics 83, 157 (1989) · Zbl 0687.92009
[3] Thieme, H. R.: Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations. Math. biosci. 111, 99 (1992) · Zbl 0782.92018
[4] Brauer, F.; Den Driessche, P. Van: Models for transmission of disease with immigration of infectives. Math. biosci. 171, 143 (2001) · Zbl 0995.92041
[5] Mena-Lorca, J.; Hethcote, H. W.: Dynamic models of infectious diseases as regulators of population sizes. J. math. Biol. 30, 693 (1992) · Zbl 0748.92012
[6] Brauer, F.: Epidemic models in populations of varying size. Lecture notes in biomathematics 81 (1989) · Zbl 0684.92016
[7] Gao, L. Q.; Hethcote, H. W.: Disease transmission models with density-dependent demographics. J. math. Biol. 30, 717 (1992) · Zbl 0774.92018
[8] Greenhalgh, D.: Some threshold and stability results for epidemic models with a density dependent death rate. Theor. pop. Biol. 42, 130 (1992) · Zbl 0759.92009
[9] Bremermann, H. J.; Thieme, H. R.: A competitive exclusion principle for pathogen virulence. J. math. Biol. 27, 179 (1989) · Zbl 0715.92027
[10] Hethcote, H. W.; Den Driessche, P. Van: Some epidemiological models with nonlinear incidence. J. math. Biol. 29, 271 (1991) · Zbl 0722.92015
[11] Derrick, W. R.; Den Driessche, P. Van: A disease transmission model in a non-constant population. J. math. Biol. 31, 495 (1993) · Zbl 0772.92015
[12] Busenberg, S.; Den Driessche, P. Van: Analysis of a disease transmission model with varying population size. J. math. Biol. 29, 257 (1990) · Zbl 0725.92021
[13] Greenhalgh, D.: Some results for a SEIR epidemic model with density dependence in the death rate. IMA J. Math. appl. Med. biol. 9, 67 (1992) · Zbl 0805.92025
[14] Cooke, K.; Den Driessche, P. Van: Analysis of an SEIRS epidemic model with two delays. J. math. Biol. 35, 240 (1996) · Zbl 0865.92019
[15] Greenhalgh, D.: Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity. Math. comput. Model. 25, 85 (1997) · Zbl 0877.92023
[16] Li, M. Y.; Muldowney, J. S.: Global stability for the SEIR model in epidemiology. Math. biosci. 125, 155 (1995) · Zbl 0821.92022
[17] Li, M. Y.; Graef, J. R.; Wang, L.; Karsai, J.: Global dynamics of a SEIR model with varying total population size. Math. biosci. 160, 191 (1999) · Zbl 0974.92029
[18] Li, M. Y.; Smith, H. L.; Wang, L.: Global dynamics of an SEIR epidemic model with vertical transmission. SIAM J. Appl. math. 62, 58 (2001) · Zbl 0991.92029
[19] Muldowney, J. S.: Compound matrices and ordinary differential equations. Rocky mount. J. math. 20, 857 (1990) · Zbl 0725.34049
[20] Hale, J. K.: Ordinary differential equations. (1969) · Zbl 0186.40901
[21] Thieme, H. R.: Convergence results and a Poincaré--Bendixson trichotomy for asymptotically automous differential equations. J. math. Biol. 30, 755 (1992) · Zbl 0761.34039
[22] Butler, G.; Waltman, P.: Persistence in dynamical systems. Proc. am. Math. soc. 96, 425 (1986) · Zbl 0603.58033
[23] Freedman, H. I.; Ruan, S. G.; Tang, M. X.: Uniform persistence and flows near a closed positively invariant set. J. dynam. Diff. equat. 6, 583 (1994) · Zbl 0811.34033
[24] London, D.: On derivations arising in differential equations. Linear multilin. Algeb. 4, 179 (1976) · Zbl 0358.15011
[25] Li, Y.; Muldowney, J. S.: Evolution of surface functionals and differential equations. Pitman research notes in mathematics 272, 144 (1992)
[26] Li, Y.; Muldowney, J. S.: On Bendixson’s criterion. J. diff. Equat. 106, 27 (1993) · Zbl 0786.34033
[27] Smith, H. L.: Systems of ordinary differential equations which generate an order preserving flow. A survey of results. SIAM rev. 30, 87 (1988) · Zbl 0674.34012
[28] Hirsch, M. W.: Systems of differential equations which are competitive or cooperative. IV: structural stabilities in three dimensional systems. SIAM J. Math. anal. 21, 1225 (1990) · Zbl 0734.34042