zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Operators of fractional integration and their applications. (English) Zbl 1022.26012
Summary: The main purpose of this paper is to present a systematic (and historical) account of the investigations carried out by various authors in the field of fractional calculus and its applications. Several interesting results, relevant to the present investigation, are also considered.

MSC:
26A33Fractional derivatives and integrals (real functions)
45L05Theoretical approximation of solutions of integral equations
33C90Applications of hypergeometric functions
47B99Special classes of linear operators
WorldCat.org
Full Text: DOI
References:
[1] Al-Saqabi, B. N.; Kalla, S. L.; Srivastava, H. M.: A certain family of infinite series associated with digamma functions. J. math. Anal. appl. 159, 361-372 (1991) · Zbl 0726.33002
[2] Altintaş, O.; Irmak, H.; Srivastava, H. M.: A subclass of analytic functions by using certain operators of fractional calculus. Comput. math. Appl. 30, No. 1, 1-9 (1995) · Zbl 0838.30012
[3] De Durán, J. Aular; Kalla, S. L.; Srivastava, H. M.: Fractional calculus and the sums of certain families of infinite series. J. math. Anal. appl. 190, 738-754 (1995) · Zbl 0827.26006
[4] R.L. Bagley, On the fractional order initial value problem and its engineering applications, in: K. Nishimoto (Ed.), Fractional Calculus and Its Applications, Proceedings of the International Conference held at the Nihon University Centre at Tokyo, 29 May--1 June 1989, Nihon University Press, Koriyama, 1990, pp. 12--20 · Zbl 0751.73023
[5] Bagley, R. L.; Torvik, P. J.: On the fractional calculus model of viscoelastic behavior. J. rheol. 30, 133-135 (1986) · Zbl 0613.73034
[6] Braaksma, B. L. J.: Asymptotic expansions and analytic continuations for a class of Barnes-integrals. Compositio math. 15, 239-341 (1964) · Zbl 0129.28604
[7] Buschman, R. G.: Fractional integration. Math. japon. 9, 99-106 (1964) · Zbl 0166.10201
[8] Campos, L. M. B.C.: On an approach to complex analysis via differintegrations. Integral transforms and special functions 1, 251-267 (1993) · Zbl 0826.30001
[9] Chen, M. -P.; Srivastava, H. M.: Fractional calculus operators and their applications involving power functions and summation of series. Appl. math. Comput. 81, 283-304 (1997)
[10] Choi, J. H.; Kim, Y. C.; Srivastava, H. M.: Starlikeness and convexity of fractional calculus operators. J. fractional calculus 10, 75-89 (1996) · Zbl 0880.30011
[11] Davis, H. T.: The application of fractional operators to functional equations. Amer. J. Math. 49, 123-142 (1927) · Zbl 53.0382.01
[12] Davis, H. T.: The theory of linear operators. (1936) · Zbl 0015.35203
[13] Deora, Y.; Banerji, P. K.: An application of fractional calculus to the solution of Euler--Darboux equation in terms of Dirichlet averages. J. fractional calculus 5, 91-94 (1994) · Zbl 0814.35089
[14] Deora, Y.; Banerji, P. K.; Saigo, M.: Fractional integral and Dirichlet averages. J. fractional calculus 6, 55-59 (1994) · Zbl 0866.26004
[15] Erdélyi, A.: On some functional transformations. Rend. sem. Mat. univ. Epolitec. Torino rend. Sem. math. 10, 217-234 (1940)
[16] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Tables of Integral Transforms, vols. I, II, McGraw-Hill, New York, 1954 · Zbl 0055.36401
[17] Erdélyi, A.; Sneddon, I. N.: Fractional integration and dual integral equations. Canad. J. Math. 14, 685-693 (1962) · Zbl 0108.29201
[18] Fox, C.: An application of fractional integration to chain transform theory. Proc. amer. Math. soc. 9, 968-973 (1958) · Zbl 0093.11704
[19] Fox, C.: The G and H functions as symmetrical Fourier kernels. Trans. amer. Math. soc. 98, 395-429 (1961) · Zbl 0096.30804
[20] Fox, C.: Integral transforms based upon fractional integration. Proc. Cambridge philos. Soc. 59, 63-71 (1963) · Zbl 0118.31901
[21] Fox, C.: An inversion formula for the kernel $K{\nu}$(x). Proc. Cambridge philos. Soc. 60, 457-467 (1965) · Zbl 0141.11303
[22] Fox, C.: A formal solution of certain dual integral equations. Trans. amer. Math. soc. 9, 389-398 (1965) · Zbl 0135.33403
[23] Fox, C.: Solving integral equations by L and operators L-1. Proc. amer. Math. soc. 29, 299-306 (1971) · Zbl 0215.19201
[24] Fox, C.: Applications of Laplace transforms and their inverses. Proc. amer. Math. soc. 35, 193-200 (1972) · Zbl 0255.44001
[25] I.V. Gaishun, A.A. Kilbas, S.V. Rogozin (Eds.), Boundary Value Problems, Special Functions and Fractional Calculus, Proceedings of the International Conference Dedicated to the 90 Birthday of Academician F.D. Gakhov (1906--1980) held at Minsk, 16--20 February 1996, Belarusian State University, Minsk, 1996
[26] Galué, L.; Kalla, S. L.; Srivastava, H. M.: Further results on an H-function generalized fractional calculus. J. fractional calculus 4, 89-102 (1993) · Zbl 0786.33008
[27] Galué, L.; Kiryakova, V. S.; Kalla, S. L.: Solution of dual integral equations by fractional calculus. Math. balkanica (N.S.) 7, 53-72 (1993) · Zbl 0830.47040
[28] Gaur, N.: A unified multiple fractional integral formula. Bull. Calcutta math. Soc. 85, 55-62 (1993) · Zbl 0774.33009
[29] Goyal, S. P.; Jain, R. M.; Gaur, N.: Fractional integral operators involving a product of generalized hypergeometric functions and a general class of polynomials. Indian J. Pure appl. Math. 22, 403-411 (1991) · Zbl 0747.44002
[30] Goyal, S. P.; Jain, R. M.; Gaur, N.: Fractional integral operators involving a product of generalized hypergeometric functions and a general class of polynomials. II. Indian J. Pure appl. Math. 23, 121-128 (1992) · Zbl 0776.44003
[31] Grünwald, A. K.: Über ”begrenzte” derivationen und deren anwendung. Z. angew. Math. phys. 12, 441-480 (1867)
[32] Gupta, K. C.; Soni, R. C.: On composition of some general fractional integral operators. Proc. indian acad. Sci. math. Sci. 104, 339-349 (1994) · Zbl 0801.33014
[33] Gupta, K. C.; Jain, R.; Agrawal, P.: A unified study of fractional operators involving general polynomials and a multivariable H-function. Soochow J. Math. 21, 29-40 (1995) · Zbl 0883.33007
[34] Hai, N. T.; Yakubovich, S. B.: The double Mellin--Barnes type integrals and their applications to convolution theory. (1992) · Zbl 0760.33008
[35] T.P. Higgins, A child’s garden of special functions, in: B. Ross (Ed.), Fractional Calculus and Its Applications, Proceedings of the International Conference held at the University of New Haven in June 1974, Lecture Notes in Mathematics, vol. 457, Springer, Berlin, 1975, pp. 216--225
[36] Jones, K. R. W.: Fractional integration and uniform densities in quantum mechanics. Recent advances in fractional calculus, 203-218 (1993) · Zbl 0790.26008
[37] Joshi, C. M.; Joshi, N. L.: Fractional derivatives and expansion formulas involving H-functions of one and more variables. J. math. Anal. appl. 207, 1-11 (1997) · Zbl 0869.33007
[38] J.M.C. Joshi, C.S. Bisht, Fractional calculus and the sum of arbitrary powers of positive integers, in: K. Nishimoto (Ed.), Fractional Calculus and Its Applications, Proceedings of the International Conference held at the Nihon University Centre at Tokyo, 29 May--1 June 1989, Nihon University Press, Koriyama, 1990, pp. 56--58 · Zbl 0760.11009
[39] Kalia, R. N.: Dual integral equations with fox’s H-function kernel. Internat. J. Math. math. Sci. 7, 257-262 (1984) · Zbl 0575.45009
[40] Kalia, R. N.: Recent advances in fractional calculus. (1993) · Zbl 0790.26003
[41] Kalla, S. L.: Integral operators involving fox’s H-function. Acta mexicana ci. Técn. 3, 117-122 (1969) · Zbl 0211.41801
[42] Kalla, S. L.: Integral operators involving fox’s H-function. II. Notae cienc. 7, 72-79 (1969)
[43] Kalla, S. L.: On operators of fractional integration. Mat. notae 22, 89-93 (1970) · Zbl 0205.57602
[44] Kalla, S. L.: On operators of fractional integration. II. Mat. notae 25, 29-35 (1976) · Zbl 0378.26007
[45] Kalla, S. L.: Functional relations by means of Riemann--Liouville operator. Serdica 13, 170-173 (1987) · Zbl 0634.33007
[46] Kalla, S. L.; Al-Saqabi, B.: A functional relation involving ${\psi}$-function. Rev. técn. Fac. ingr. Univ. zulia 8, 31-35 (1985) · Zbl 0589.39009
[47] Kalla, S. L.; Kiryakova, V. S.: An H-function generalized fractional calculus based upon composition of erdélyi--kober operators in lp. Math. japon. 35, 1151-1171 (1990) · Zbl 0739.33010
[48] Kalla, S. L.; Saxena, R. K.: Integral operators involving hypergeometric functions. Math. zeitschr. 108, 231-234 (1969) · Zbl 0169.14503
[49] Kalla, S. L.; Saxena, R. K.: Integral operators involving hypergeometric functions. II. Univ. nac. Tucumán rev. Ser. A 24, 31-36 (1974)
[50] Kant, S.; Koul, C. L.: On fractional integral operators. J. indian math. Soc. (N.S.) 56, 97-107 (1991) · Zbl 0865.33009
[51] Kilbas, A. A.; Saigo, M.: On Mittag--Leffler type function fractional calculus operators and solutions of integral equations. Integral transforms and special functions 4, 355-370 (1996) · Zbl 0876.26007
[52] Kim, Y. C.; Lee, K. S.; Srivastava, H. M.: Some applications of fractional integral operators and Ruscheweyh derivatives. J. math. Anal. appl. 197, 505-517 (1996) · Zbl 0848.30007
[53] Kiryakova, V. S.: On operators of fractional integration involving meijer’s G-function. CR acad. Bulgare sci. 39, No. 10, 25-28 (1986) · Zbl 0606.33008
[54] Kiryakova, V.: Multiple erdélyi--kober fractional differintegrals and their uses in univalent, starlike and convex function theory. Ann. univ. Sofia kliment ohridski 81, 261-283 (1987) · Zbl 0974.30530
[55] V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics Series No. 301, Longman Scientific and Technical, Harlow, Essex, 1994 · Zbl 0882.26003
[56] Kiryakova, V. S.; Srivastava, H. M.: Generalized multiple Riemann--Liouville fractional differintegrals and their applications in univalent function theory. Analysis geometry and groups: A Riemann legacy volume, part I, 191-226 (1993) · Zbl 0916.30005
[57] Kober, H.: On fractional integrals and derivatives. Quart. J. Math. Oxford ser. 11, 193-211 (1940) · Zbl 66.0520.02
[58] Lacroix, S. F.: Traité du calcul différentiel et du calcul intégral. (1819)
[59] Lamb, W.: Fractional powers of operators defined on a Fréchet space. Proc. Edinburgh math. Soc. (2) 27, 165-180 (1984) · Zbl 0527.47002
[60] W. Lamb, Fractional calculus via fractional powers of operators, in: A.C. McBride, G.F. Roach (Eds.), Fractional Calculus, Proceedings of the International Workshop held at Ross Priory (University of Strathclyde) at Glasgow in August 1984, Research Notes in Math., vol. 138, Pitman Advanced Publishing Program, Boston, 1985, pp. 49--62
[61] Lavoie, J. L.; Osler, T. J.; Tremblay, R.: Fractional derivatives and special functions. SIAM rev. 18, 240-268 (1976) · Zbl 0324.44002
[62] J.L. Lavoie, R. Tremblay, T.J. Osler, Fundamental properties of fractional derivatives via Pochhammer integrals, in: B. Ross (Ed.), Fractional Calculus and Its Applications, Proceedings of the International Conference held at the University of New Haven in June 1974, Lecture Notes in Mathematics, vol. 457, Springer, Berlin, 1975, pp. 323--356 · Zbl 0322.26005
[63] Letnikov, A. V.: An explanation of fundamental notions of the theory of differentiation of fractional order. Mat. sb. 6, 413-445 (1872)
[64] Love, E. R.: Some integral equations involving hypergeometric functions. Proc. Edinburgh math. Soc. (2) 15, 169-198 (1967) · Zbl 0173.14202
[65] Love, E. R.: Two more hypergeometric integral equations. Proc. Cambridge philos. Soc. 63, 1055-1076 (1967) · Zbl 0166.38502
[66] Love, E. R.: Fractional derivatives of imaginary order. J. London math. Soc. (2) 3, 241-259 (1971) · Zbl 0207.43902
[67] Love, E. R.: Two index laws for fractional integrals and derivatives. J. austral. Math. soc. 14, 385-410 (1972) · Zbl 0249.26009
[68] E.R. Love, A third index law for fractional integrals and derivatives, in: A.C. McBride, G.F. Roach (Eds.), Fractional Calculus, Proceedings of the International Workshop held at Ross Priory (University of Strathclyde) at Glasgow in August 1984, Research Notes in Mathematics, vol. 138, Pitman Advanced Publishing Program, Boston, 1985, pp. 75--86
[69] J.S. Lowndes, On two new operators of fractional integration, in: A.C. McBride, G.F. Roach (Eds.), Fractional Calculus, Proceedings of the International Workshop held at Ross Priory (University of Strathclyde) at Glasgow in August 1984, Research Notes in Mathematics, vol. 138, Pitman Advanced Publishing Program, Boston, 1985, pp. 87--98
[70] Lowndes, J. S.; Srivastava, H. M.: Some triple series and triple integral equations. J. math. Anal. appl. 150, 181-187 (1990) · Zbl 0687.45004
[71] Luchko, Yu.F.; Srivastava, H. M.: The exact solution of certain differential equations of fractional order by using operational calculus. Comput. math. Appl. 29, No. 8, 73-85 (1995) · Zbl 0824.44011
[72] Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. math. Lett. 9, No. 6, 23-28 (1996) · Zbl 0879.35036
[73] Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos solitons and fractals 7, 1461-1477 (1996) · Zbl 1080.26505
[74] O.I. Marichev, Compositions of fractional integrals and derivatives with power weights, in: K. Nishimoto (Ed.), Fractional Calculus and Its Applications, Proceedings of the International Conference held at the Nihon University Centre at Tokyo, 29 May--1 June 1989, Nihon University Press, Koriyama, 1990, pp. 94--99 · Zbl 0754.44003
[75] A.M. Mathai, R.K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Lecture Notes in Mathematics, vol. 348, Springer, Berlin, 1973 · Zbl 0272.33001
[76] A.M. Mathai, R.K. Saxena, The H-Function with Applications in Statistics and Other Disciplines, Halsted Press, Wiley Eastern Limited, New Delhi; Wiley, New York, 1978 · Zbl 0382.33001
[77] Mathur, B. L.; Krishna, S.: On multivariate fractional integration operators. Indian J. Pure appl. Math. 8, 1078-1082 (1977) · Zbl 0385.44003
[78] Mcbride, A. C.: On the ranges of certain fractional integrals. Canad. J. Math. 24, 1198-1216 (1972) · Zbl 0249.44009
[79] A.C. McBride, Fractional Calculus and Integral Transforms of Generalized Functions, Research Notes in Mathematics, vol. 31, Pitman Advanced Publishing Program, Boston, 1979 · Zbl 0423.46029
[80] A.C. McBride, G.F. Roach (Eds.), Fractional Calculus, Proceedings of the International Workshop held at Ross Priory (University of Strathclyde) at Glasgow in August 1984, Research Notes in Mathematics, vol. 138, Pitman Advanced Publishing Program, Boston, 1985
[81] Meijer, C. S.: On the G-function. I. Nederl. akad. Wetensch proc. 49, 227-237 (1946) · Zbl 0060.19901
[82] Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations. (1993) · Zbl 0789.26002
[83] Mittal, P. K.; Gupta, K. C.: An integral involving generalized function of two variables. Proc. indian acad. Sci. sect. A 75, 117-123 (1972) · Zbl 0241.33009
[84] Narain, R.: Fractional integration and certain dual integral equations. Math. zeitschr. 98, 83-88 (1967)
[85] Narain, R.: A pair of unsymmetrical Fourier kernels. Trans. amer. Math. soc. 115, 356-369 (1965) · Zbl 0134.31503
[86] K. Nishimoto, Fractional Calculus, vols. I--IV, Descartes Press, Koriyama, 1984, 1987, 1989, 1991 · Zbl 0605.26006
[87] K. Nishimoto (Ed.), Fractional Calculus and Its Applications, Proceedings of the International Conference held at the Nihon University Centre at Tokyo on 29 May--1 June 1989, Nihon University Press, Koriyama, 1990 · Zbl 0702.35056
[88] Nishimoto, K.: An essence of nishimoto’s fractional calculus (Calculus of the 21st century): integrations and differentiations of arbitrary order. (1991) · Zbl 0798.26007
[89] Nishimoto, K.; Saxena, R. K.: On the two-dimensional erdélyi--kober operators of Weyl type. J. college engrg. Nihon univ. Ser. B 31, 23-27 (1990) · Zbl 0698.44002
[90] Nishimoto, K.; Saxena, R. K.: An application of Riemann--Liouville operator in the unification of certain functional relations. J. college engrg. Nihon univ. Ser. B 32, 133-139 (1991) · Zbl 0896.33008
[91] Nishimoto, K.; Sekine, T.; Srivastava, H. M.: Some families of infinite series summable by means of fractional calculus. J. college engrg. Nihon univ. Ser. B 33, 1-8 (1992) · Zbl 0743.33005
[92] Nishimoto, K.; Srivastava, H. M.: Certain classes of infinite series summable by means of fractional calculus. J. college engrg. Nihon univ. Ser. B 30, 97-106 (1989) · Zbl 0651.33002
[93] Oldham, K. B.; Spanier, J.: The fractional calculus: theory and applications of differentiation and integration to arbitrary order. (1974) · Zbl 0292.26011
[94] Osler, T. J.: Leibniz rule for fractional derivatives generalized and an application to infinite series. SIAM J. Appl. math. 18, 658-674 (1970) · Zbl 0201.44102
[95] Owa, S.: On the distortion theorems. I. Kyungpook math. J. 18, 53-59 (1978) · Zbl 0401.30009
[96] Owa, S.; Saigo, M.; Srivastava, H. M.: Some characterization theorems for starlike and convex functions involving a certain fractional integral operator. J. math. Anal. appl. 140, 419-426 (1989) · Zbl 0668.30013
[97] Owa, S.; Srivastava, H. M.: Univalent and starlike generalized hypergeometric functions. Canad. J. Math. 39, 1057-1077 (1987) · Zbl 0611.33007
[98] Pandey, R. N.; Srivastava, H. M.: Fractional calculus and its applications involving certain classes of functional relations. Stud. appl. Math. 89, 153-165 (1993) · Zbl 0772.33009
[99] Parashar, B. P.: Domain and range of fractional integration operators. Math. japon. 12, 141-145 (1968) · Zbl 0162.43701
[100] Pathak, R. S.: On certain dual integral equations. Defence sci. J. 24, 31-40 (1974) · Zbl 0294.45007
[101] A.S. Peters, Certain dual integral equations and Sonine’s integrals, IMM-NYU 285, Institute of Mathematical Sciences, New York University, New York, 1961
[102] P.C. Phillips, Fractional matrix calculus and the distribution of multivariate tests, Cowles Foundation Paper 767, Department of Economics, Yale University, New Haven, CT, 1989
[103] P.C. Phillips, Operational calculus and regression t-tests, Cowles Foundation Paper 948, Department of Economics, Yale University, New Haven, CT, 1990
[104] Podlubny, I.: Riesz potential and Riemann--Liouville fractional integrals and derivatives of Jacobi polynomials. Appl. math. Lett. 10, No. 1, 103-108 (1997) · Zbl 0883.33003
[105] Podlubny, I.: Fractional differential equations. (1999) · Zbl 0924.34008
[106] Post, E. L.: Generalized differentiation. Trans. amer. Math. soc. 32, 23-781 (1930) · Zbl 56.0349.01
[107] A.P. Prudnikov, Yu.A. Bryčkov, O.I. Maričev, Integrals and Series of Elementary Functions (in Russian), Nauka, Moscow, 1981 (English translation: Integrals and Series, vol. 1: Elementary Functions, Gordon and Breach, New York, 1986)
[108] Raina, R. K.: On the multiple Weyl fractional integral of a general system of polynomials. Boll. un. Mat. ital. A (6) 3, 283-287 (1984) · Zbl 0546.26001
[109] Raina, R. K.; Srivastava, H. M.: Evaluation of a certain class of Eulerian integrals. J. phys. A: math. Gen. 26, 691-696 (1993) · Zbl 0767.33008
[110] Raina, R. K.; Srivastava, H. M.: A certain subclass of analytic functions associated with operators of fractional calculus. Comput. math. Appl. 32, No. 7, 13-19 (1996) · Zbl 0867.30015
[111] Raina, R. K.; Srivastava, H. M.: Some subclasses of analytic functions associated with fractional calculus operators. Comput. math. Appl. 37, No. 9, 73-84 (1999) · Zbl 0934.30009
[112] Riesz, M.: L’intégrale de Riemann--Liouville et le probléme de Cauchy. Acta math. 81, 1-223 (1950)
[113] B. Ross, A brief history and exposition of the fundamental theory of fractional calculus, in: B. Ross (Ed.), Fractional Calculus and Its Applications, Proceedings of the International Conference held at the University of New Haven in June 1974, Lecture Notes in Mathematics, vol. 457, Springer, Berlin, 1975, pp. 1--36
[114] Ross, B.: Serendipity in mathematics or how one is led to discover that \sumn=$1\infty 1{\cdot}3{\cdot}5\cdots(2n-1)$ n2nn!= 1 2+ 3 16+ 15 144+\cdots=ln4. Amer. math. Monthly 90, 562-566 (1983) · Zbl 0539.26005
[115] Ross, B.: A formula for the fractional integration and differentiation of (a+bx)c. J. fractional calculus 5, 87-89 (1994) · Zbl 0858.26007
[116] B. Ross, S.L. Kalla, The method of fractional operators applied to summation, Real Anal. Exchange 11 (1985/1986) 271--282 · Zbl 0597.33003
[117] P. Rusev, I. Dimovski, V. Kiryakova (Eds.), Transform Methods and Special Functions. I, Proceedings of the First International Workshop on Transform Methods and Special Functions held at Bankya [Sofia], Bulgaria, 12--17 August 1994, Science Culture Technology Publishing Company, Singapore, 1995
[118] P. Rusev, I. Dimovski, V. Kiryakova (Eds.), Transform Methods and Special Functions. II, Proceedings of the Second International Workshop on Transform Methods and Special Functions held at Varna, Bulgaria, 23--30 August 1996, Bulgarian Academy of Sciences, Sofia, 1998
[119] Saigo, M.: A remark on integral operators involving the Gauss hypergeometric functions. Math. rep. College general ed. Kyushu univ. 11, 135-143 (1978) · Zbl 0399.45022
[120] Saigo, M.: A certain boundary value problem for the Euler--Darboux equation. Math. japon. 24, 377-385 (1979) · Zbl 0428.35064
[121] Saigo, M.: A certain boundary value problem for the Euler--Darboux equation. II. Math. japon. 25, 211-220 (1980) · Zbl 0457.35071
[122] Saigo, M.: A certain boundary value problem for the Euler--Darboux equation. III. Math. japon. 26, 103-119 (1981) · Zbl 0457.35072
[123] M. Saigo, A generalization of fractional calculus, in: A.C. McBride, G.F. Roach (Eds.), Fractional Calculus, Proceedings of an International Workshop held at Ross Priory (University of Strathclyde) at Glasgow in August 1984, Research Notes in Mathematics, vol. 138, Pitman Advanced Publishing Program, Boston, 1985, pp. 188--198
[124] M. Saigo, Fractional integrals and derivatives associated with elementary functions and Bessel functions, in: H.M. Srivastava, S. Owa (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Proceedings of the International Symposium on Univalent Functions, Fractional Calculus, and Their Applications held at Koriyama Kenshu Kaikan, College of Engineering, Nihon University Koriyama, 1--5 May 1988, Halsted Press, Ellis Horwood Limited, Chichester; Wiley, New York, 1989
[125] Saigo, M.; Glaeske, H. -J.: Fractional calculus operators involving the Gauss hypergeometric function on spaces fp,${\mu}$ and f’p,${\mu}$. Math. nachr. 147, 285-306 (1990) · Zbl 0737.46030
[126] Saigo, M.; Raina, R. K.: Fractional calculus operators associated with a general class of polynomials. Fukuoka univ. Sci. rep. 18, 15-22 (1988) · Zbl 0733.33003
[127] Saigo, M.; Saxena, R. K.; Ram, J.: Certain properties of operators of fractional integration associated with Mellin and Laplace transformations. Current topics in analytic function theory, 291-304 (1992) · Zbl 0984.44500
[128] Saigo, M.; Saxena, R. K.; Ram, J.: On the fractional calculus operator associated with the H-function. Gan \dot{}ita sandesh 6, 36-47 (1992) · Zbl 0761.33006
[129] Saigo, M.; Saxena, R. K.; Ram, J.: Application of generalized fractional calculus operators in the solution of certain dual integral equations. Integral transforms and special functions 1, 207-222 (1993) · Zbl 0822.45001
[130] Sakaeda, N.; Yakubovich, S. B.; Saigo, M.: On Leibniz rules involving generalized fractional calculus operators. Fukuoka univ. Sci. rep. 26, 63-78 (1996) · Zbl 0921.26004
[131] S.G. Samko, A.A. Kilbas, O.I. Maričev, Fractional Integrals and Derivatives and Some of Their Applications (in Russian), Nauka i Tekhnica, Minsk, 1987 (English translation: Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Reading, 1993)
[132] Saxena, R. K.: An inversion formula for the varma transform. Proc. Cambridge philos. Soc. 62, 467-471 (1966) · Zbl 0168.10202
[133] Saxena, R. K.: An inversion formula for a kernel involving a Mellin--Barnes type integral. Proc. amer. Math. soc. 17, 771-779 (1966) · Zbl 0173.14904
[134] Saxena, R. K.: On fractional integration operators. Math. zeitschr. 96, 288-291 (1967) · Zbl 0145.15703
[135] Saxena, R. K.: A formal solution of certain dual integral equations involving H-functions. Proc. Cambridge philos. Soc. 63, 171-178 (1967) · Zbl 0144.36701
[136] Saxena, R. K.: On the formal solution of dual integral equations. Proc. amer. Math. soc. 18, 1-8 (1967) · Zbl 0144.36702
[137] Saxena, R. K.; Gupta, O. P.: On certain relations connecting erdélyi--kober operators and generalised Laplace transforms. J. fractional calculus 3, 73-79 (1993) · Zbl 0790.26007
[138] Saxena, R. K.; Gupta, O. P.; Kumbhat, R. K.: On two-dimensional Weyl fractional calculus. CR acad. Bulgare sci. 42, No. 7, 11-14 (1989) · Zbl 0685.44005
[139] Saxena, R. K.; Kiryakova, V. S.: On a relation between the two-dimensional H-transforms in terms of erdélyi--kober operators. Math. balkanica (N.S.) 6, 133-140 (1992) · Zbl 0831.44002
[140] Saxena, R. K.; Kiryakova, V. S.; Dave, O. P.: A unified approach to certain fractional integration operators. Math. balkanica (N.S.) 8, 211-219 (1994) · Zbl 0894.26002
[141] Saxena, R. K.; Kumbhat, R. K.: A generalization of kober operators. Vijnana parishad anusandhan patrika 16, 31-36 (1973)
[142] Saxena, R. K.; Kumbhat, R. K.: Integral operators involving H-function. Indian J. Pure appl. Math. 5, 1-6 (1974) · Zbl 0305.44003
[143] Saxena, R. K.; Kumbhat, R. K.: Some properties of generalized kober operators. Vijnana parishad anusandhan patrika 18, 139-150 (1975) · Zbl 1195.44005
[144] Saxena, R. K.; Modi, G. C.: Multidimensional fractional integration operators associated with hypergeometric functions. Nat. acad. Sci. lett. India 3, 153-157 (1980) · Zbl 0473.33004
[145] Saxena, R. K.; Nishimoto, K.: Fractional integral formula for the H-function. J. fractional calculus 6, 65-75 (1994) · Zbl 0826.33007
[146] R.K. Saxena, J. Ram, Multidimensional fractional integration operators associated with generalized hypergeometric functions, in: Proceedings of the Symposium on Special Functions and Problem-Oriented Research held at Trivandrum in 1988, Publication No. 14, Centre of Mathematical Sciences, Trivandrum, 1988, pp. 39--47 · Zbl 0739.33004
[147] Saxena, R. K.; Ram, J.: On certain multidimensional generalized kober operators. Collect. math. 41, 27-34 (1990) · Zbl 0735.44005
[148] Saxena, R. K.; Ramawat, A.; Singh, Y.: Multidimensional fractional integration operators associated with multivariable I-function. Gan \dot{}ita sandesh 6, 105-112 (1992) · Zbl 0778.44003
[149] Saxena, R. K.; Singh, Y.: Integral operators involving generalized H-function. Indian J. Math. 35, 177-188 (1993) · Zbl 0826.33006
[150] Saxena, V. P.: A formal solution of certain new pair of dual integral equations involving H-functions. Proc. nat. Acad. sci. India sect. A 52, 366-375 (1982) · Zbl 0535.45001
[151] Somorjai, R. L.; Bishop, D. M.: Integral-transformation trial functions of the fractional-integral class. Phys. rev. A 1, 1013 (1970)
[152] Srivastava, H. M.: A contour integral involving fox’s H-function. Indian J. Math. 14, 1-6 (1972) · Zbl 0226.33016
[153] Srivastava, H. M.: The Weyl fractional integral of a general class of polynomials. Boll. un. Mat. ital. B (6) 2, 219-228 (1983) · Zbl 0487.33006
[154] Srivastava, H. M.: A multilinear generating function for the konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials. Pacific J. Math. 117, 183-191 (1985) · Zbl 0535.33003
[155] H.M. Srivastava, The use of fractional calculus and other operational techniques in obtaining generating functions, in: K. Nishimoto (Ed.), Fractional Calculus and Its Applications, Proceedings of the International Conference held at the Nihon University Centre at Tokyo, 29 May--1 June 1989, Nihon University Press, Koriyama, 1990, pp. 253--261 · Zbl 0900.26019
[156] Srivastava, H. M.: A simple algorithm for the evaluation of a class of generalized hypergeometric series. Stud. appl. Math. 86, 79-86 (1992) · Zbl 0724.33002
[157] Srivastava, H. M.: Some applications of fractional calculus involving the gamma and related functions. Recent advances in fractional calculus, 179-202 (1993) · Zbl 0801.33003
[158] Srivastava, H. M.; Aouf, M. K.: Some applications of fractional calculus operators to certain subclasses of prestarlike functions with negative coefficients. Comput. math. Appl. 30, No. 1, 53-61 (1995) · Zbl 0838.30014
[159] Srivastava, H. M.; Aouf, M. K.: A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I. J. math. Anal. appl. 171, 1-13 (1992) · Zbl 0760.30006
[160] Srivastava, H. M.; Aouf, M. K.: A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. II. J. math. Anal. appl. 192, 673-688 (1995) · Zbl 0831.30008
[161] Srivastava, H. M.; Buschman, R. G.: Composition of fractional integral operators involving fox’s H-function. Acta mexicana ci. Técn. 7, 3-10 (1973)
[162] H.M. Srivastava, R.G. Buschman, Convolution Integral Equations with Special Function Kernels, Halsted Press, Wiley Eastern Limited, New Delhi; Wiley, New York, 1977 · Zbl 0346.45010
[163] H.M. Srivastava, R.G. Buschman, Theory and Applications of Convolution Integral Equations, Mathematics and Its Applications, vol. 79, Kluwer Academic Publishers, Dordrecht, 1992 · Zbl 0755.45002
[164] Srivastava, H. M.; Chandel, R. C. S.; Vishwakarma, P. K.: Fractional derivatives of certain generalized hypergeometric functions of several variables. J. math. Anal. appl. 184, 560-572 (1994) · Zbl 0801.33018
[165] Srivastava, H. M.; Garg, M.: Some integrals involving a general class of polynomials and the multivariable H-function. Rev. roumaine phys. 22, 685-692 (1987) · Zbl 0632.33005
[166] Srivastava, H. M.; Goyal, S. P.: Fractional derivatives of the H-function of several variables. J. math. Anal. appl. 112, 645-651 (1985) · Zbl 0564.33002
[167] Srivastava, H. M.; Goyal, S. P.; Jain, R. M.: Fractional integral operators involving a general class of polynomials. J. math. Anal. appl. 148, 87-100 (1990) · Zbl 0686.33012
[168] Srivastava, H. M.; Goyal, S. P.; Jain, R. M.: A theorem relating a certain generalized Weyl fractional integral with the Laplace transform and a class of Whittaker transforms. J. math. Anal. appl. 153, 407-419 (1990) · Zbl 0714.33008
[169] Srivastava, H. M.; Gupta, K. C.; Goyal, S. P.: The H-functions of one and two variables with applications. (1982) · Zbl 0506.33007
[170] Srivastava, H. M.; Hussain, M. A.: Fractional integration of the H-function of several variables. Comput. math. Appl. 30, No. 9, 73-85 (1995) · Zbl 0834.33009
[171] Srivastava, H. M.; Joshi, J. M. C.; Bisht, C. S.: Fractional calculus and the sum of powers of natural numbers. Stud. appl. Math. 85, 183-193 (1991) · Zbl 0727.11008
[172] H.M. Srivastava. P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, Ellis Horwood Limited, Chichester; Wiley, New York, 1985
[173] H.M. Srivastava, M.L. Manocha, A Treatise on Generating Functions, Halsted Press, Ellis Horwood Limited, Chichester; Wiley, New York, 1984 · Zbl 0535.33001
[174] Srivastava, H. M.; Nishimoto, K.: An elementary proof of a generalization of a certain functional relation derived by means of fractional calculus. J. fractional calculus 1, 62-68 (1992) · Zbl 0849.33009
[175] H.M. Srivastava, S. Owa (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Proceedings of the International Symposium on Univalent Functions, Fractional Calculus, and Their Applications held at Koriyama Kenshu Kaikan, College of Engineering, Nihon University, Koriyama, 1--5 May 1988, Halsted Press, Ellis Horwood Limited, Chichester; Wiley, New York, 1989
[176] Srivastava, H. M.; Owa, S.: Current topics in analytic function theory. (1992) · Zbl 0976.00007
[177] Srivastava, H. M.; Panda, R.: Some bilateral generating functions for a class of generalized hypergeometric polynomials. J. reine angew. Math. 283/284, 265-274 (1976) · Zbl 0315.33003
[178] Srivastava, H. M.; Saigo, M.: Multiplication of fractional calculus operators and boundary value problems involving the Euler--Darboux equation. J. math. Anal. appl. 121, 325-369 (1987) · Zbl 0875.35015
[179] Srivastava, H. M.; Saigo, M.; Owa, S.: A class of distortion theorems involving certain operators of fractional calculus. J. math. Anal. appl. 131, 412-420 (1988) · Zbl 0628.30014
[180] Srivastava, H. M.; Saxena, R. K.; Ram, J.: Some multidimensional fractional integral operators involving a general class of polynomials. J. math. Anal. appl. 193, 373-389 (1995) · Zbl 0843.26005
[181] Srivastava, H. M.; Shen, C. Y.; Owa, S.: A linear fractional calculus operator and its applications to certain subclasses of analytic functions. J. math. Anal. appl. 143, 138-147 (1989) · Zbl 0672.30012
[182] Srivastava, H. M.; Singh, N. P.: The integration of certain products of the multivariable H-function with a general class of polynomials. Rend. circ. Mat. Palermo (2) 32, 157-187 (1983) · Zbl 0497.33003
[183] Srivastava, H. M.; Yakubovich, S. B.; Luchko, Yu.F.: The convolution method for the development of new Leibniz rules involving fractional derivatives and of their integral analogues. Integral transforms and special functions 1, 119-134 (1993) · Zbl 0822.33006
[184] Srivastava, H. M.; Yakubovich, S. B.; Luchko, Yu.F.: New families of Leibniz type rules for fractional calculus and their integral analogues. Recent advances in fractional calculus, 248-291 (1993) · Zbl 0786.26007
[185] R. Srivastava, Some applications of fractional calculus, in: H.M. Srivastava, S. Owa (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Proceedings of the International Symposium on Univalent Functions, Fractional Calculus, and Their Applications held at Koriyama Kenshu Kaikan, College of Engineering, Nihon University, Koriyama, 1--5 May 1988, Halsted Press, Ellis Horwood Limited, Chichester; Wiley, New York, 1989, pp. 371--382
[186] R. Srivastava, The multidimensional Weyl fractional integral of certain classes of polynomials, in: K. Nishimoto (Ed.), Fractional Calculus and Its Applications, Proceedings of the International Conference held at the Nihon University Centre at Tokyo, 29 May-- 1 June 1989, Nihon University Press, Koriyama, 1990, pp. 262--269 · Zbl 0745.26012
[187] Srivastava, R.: A simplified overview of certain relations among infinite series that arose in the context of fractional calculus. J. math. Anal. appl. 162, 152-158 (1991) · Zbl 0741.33001
[188] Tu, S. -T.; Chyan, D. -K.; Srivastava, H. M.: Certain operators of fractional calculus and their applications associated with logarithmic and digamma functions. J. fractional calculus 10, 67-73 (1996) · Zbl 0881.26001
[189] Vyas, D. N.; Banerji, P. K.; Saigo, M.: On Dirichlet average and fractional integral of a general class of polynomials. J. fractional calculus 6, 61-64 (1994) · Zbl 0866.26005
[190] Wu, T. -C.; Leu, S. -H.; Tu, S. -T.; Srivastava, H. M.: A certain class of infinite sums associated with digamma functions. Appl. math. Comput. 105, 1-9 (1999) · Zbl 0933.33002