×

zbMATH — the first resource for mathematics

Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields. (English) Zbl 1022.31001
An external field is a continuous function \(V: \mathbb R\to\mathbb R\) such that \(V(x)/\log |x|\to +\infty\) as \(|x|\to +\infty\). The weighted energy of a Borel probability measure \(\mu\) is given by \[ I_V(\mu)=-\iint\log |s-t|d\mu (s) d\mu (t)+2\int V(t) d\mu (t), \] and the extremal weighted energy is \(E_V=\inf I_V(\mu)\), where the infimum is taken over all such (nonnegative) measures. There is a unique Borel probability measure \(\mu_V\), called the equilibrium measure, such that \(I_V(\mu_V)=E_V\). Let \(S_V\) denote the support of \(\mu_V\), which is necessarily compact. It is known that if \(V\) is real analytic, then \(\mu_V\) has a density \(\psi_V\) and \(S_V\) is a finite union of closed intervals. If \(V\) is an external field, then there is a real constant \(\ell_V\) such that \(\int \log |x-t|d\mu (t)-V(x)\leq \ell_V\) for all real \(x\) with equality for each \(x\) in \(S_V\). A real analytic external field \(V\) is called regular if (i) the above inequality is strict for each \(x\) in \(\mathbb R\backslash S_V\), (ii) \(\psi_V >0\) on the interior of \(S_V\), (iii) \(\psi_V\) vanishes like a square root at each endpoint of \(S_V\).
A large part of the paper is devoted to the study of the family \(\{V/c: c>0\}\), where \(V\) is a given real analytic external field. It is shown, for example, that (i)\(V/c\) is regular for all but a discrete set of values of \(c\), (ii) \(V/c\) is regular for all sufficiently small values of \(c\), and for such \(c\) the support \(S_{V/c}\) is a union of intervals each containing precisely one point at which \(V\) attains its global minimum. It is also shown that regularity is a generic property: regular external fields form an open dense subset of the set of real analytic external fields equipped with a suitable metric.
Applications to random matrices, orthogonal polynomials, and integrable systems are discussed.

MSC:
31A15 Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
82B10 Quantum equilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bleher, Ann of Math (2) 150 pp 185– (1999) · Zbl 0956.42014 · doi:10.2307/121101
[2] Boutet de Monvel, J Statist Phys 79 pp 585– (1995) · Zbl 1081.82569 · doi:10.1007/BF02184872
[3] Buyarov, Mat Sb 190 pp 11– (1999) · doi:10.4213/sm407
[4] Buyarov, Sb Math 190 pp 791– (1999) · Zbl 0933.31002 · doi:10.1070/SM1999v190n06ABEH000407
[5] Damelin, Trans Amer Math Soc 351 pp 4561– (1999) · Zbl 0943.31001 · doi:10.1090/S0002-9947-99-02509-X
[6] Deift, J Approx Theory 95 pp 388– (1998) · Zbl 0918.31001 · doi:10.1006/jath.1997.3229
[7] Deift, Internat Math Res Notices pp 759– (1997) · Zbl 0897.42015 · doi:10.1155/S1073792897000500
[8] Deift, Comm Pure Appl Math 52 pp 1491– (1999) · Zbl 1026.42024 · doi:10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.0.CO;2-#
[9] Deift, Comm Pure Appl Math 5211 pp 1335– (1999) · Zbl 0944.42013 · doi:10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO;2-1
[10] Deift, Mem Amer Math Soc 131 (1998)
[11] Flaschka, Comm Pure Appl Math 33 pp 739– (1980) · Zbl 0454.35080 · doi:10.1002/cpa.3160330605
[12] Gonchar, Mat Sb (N S) 125 pp 117– (1984)
[13] Gonchar, Math USSR-Sb 53 pp 119– (1986) · Zbl 0618.30008 · doi:10.1070/SM1986v053n01ABEH002912
[14] ; ; The behavior of solutions of the NLS equation in the semiclassical limit. Singular limits of dispersive waves (Lyon, 1991), 235-255, NATO Adv Sci Inst Ser B Phys, 320. Plenum, New York, 1994. · doi:10.1007/978-1-4615-2474-8_18
[15] Jin, Comm Pure Appl Math 525 pp 613– (1999) · Zbl 0935.35148 · doi:10.1002/(SICI)1097-0312(199905)52:5<613::AID-CPA2>3.0.CO;2-L
[16] Johansson, Duke Math J 911 pp 151– (1998) · Zbl 1039.82504 · doi:10.1215/S0012-7094-98-09108-6
[17] Kiessling, Comm Math Phys 199 pp 683– (1999) · Zbl 0928.15015 · doi:10.1007/s002200050516
[18] Extremal problems for logarithmic potentials. Approximation theory IX, 201-222. and , eds. Vanderbilt University Press, Nashville, 1998.
[19] Kuijlaars, Proc Amer Math Soc 127 pp 1065– (1999) · Zbl 1050.31002 · doi:10.1090/S0002-9939-99-04590-6
[20] Lax, Comm Pure Appl Math 363636 pp 253– (1983) · Zbl 0532.35067 · doi:10.1002/cpa.3160360302
[21] Strong asymptotics for extremal errors and polynomials associated with Erdös-type weights. Pitman Research Notes in Mathematics Series, 202. Longman, Harlow; copublished in the United States with John Wiley, New York, 1989.
[22] Lubinsky, Acta Appl Math 33 pp 121– (1993) · Zbl 0799.42013 · doi:10.1007/BF00995486
[23] ; Strong asymptotics for extremal polynomials associated with weights on R. Lecture Notes in Mathematics, 1305. Springer, Berlin-New York, 1988. · Zbl 0647.41001 · doi:10.1007/BFb0082413
[24] Random matrices. Second edition. Academic Press, Boston, 1991.
[25] Mhaskar, Trans Amer Math Soc 285 pp 203– (1984) · doi:10.1090/S0002-9947-1984-0748838-0
[26] Pastur, J Statist Phys 86 pp 109– (1997) · Zbl 0916.15009 · doi:10.1007/BF02180200
[27] Rakhmanov, Mat Sb (N S) 119 pp 163– (1982)
[28] Rakhmanov, Math Sb (N S) 47 pp 155– (1984) · Zbl 0522.42018 · doi:10.1070/SM1984v047n01ABEH002636
[29] Strong asymptotics for orthogonal polynomials. Methods of approximation theory in complex analysis and mathematical physics (Leningrad, 1991), 71-97. Lecture Notes in Mathematics, 1550. Springer, Berlin, 1993. · doi:10.1007/BFb0117475
[30] Potential theory in the complex plane. London Mathematical Society Student Texts, 28. Cambridge University Press, Cambridge, 1995. · doi:10.1017/CBO9780511623776
[31] ; Logarithmic potentials with external fields. Appendix B by Thomas Bloom. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 316. Springer, Berlin, 1997. · Zbl 0881.31001 · doi:10.1007/978-3-662-03329-6
[32] ; General orthogonal polynomials. Encyclopedia of Mathematics and Its Applications, 43. Cambridge University Press, Cambridge, 1992. · doi:10.1017/CBO9780511759420
[33] Weighted approximation with varying weight. Lecture Notes in Mathematics, 1569. Springer, Berlin, 1994. · doi:10.1007/BFb0076133
[34] Tracy, Comm Math Phys 159 pp 151– (1994) · Zbl 0789.35152 · doi:10.1007/BF02100489
[35] Venakides, Comm Pure Appl Math 433 pp 335– (1990) · Zbl 0705.35125 · doi:10.1002/cpa.3160430303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.