zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive resonance periodic problems of first order. (English) Zbl 1022.34025
A theorem on the existence of solutions to the nonlinear periodic boundary value problem $$u'(t)+ F(t, u(t))= 0,\quad t\ne t_1,\dots, t_p,\quad u(t^+_j)= u(t^-_j)+ I_j(u(t^-_j)),\quad j= 1,\dots, p,$$ is proved.

MSC:
34B37Boundary value problems for ODE with impulses
34C25Periodic solutions of ODE
34B15Nonlinear boundary value problems for ODE
WorldCat.org
Full Text: DOI
References:
[1] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations. (1989) · Zbl 0719.34002
[2] Samoilenko, A. M.; Perestyuk, N. A.: Impulsive differential equations. (1995) · Zbl 0837.34003
[3] O’regan, D.: Existence theory for nonlinear ordinary differential equations. (1997)
[4] Franco, D.; Liz, E.; Nieto, J. J.; Rogovchenko, Y. V.: A contribution to the study of functional differential equations with impulses. Math. nachr. 218, 49-60 (2000) · Zbl 0966.34073
[5] Rogovchenko, Y. V.: Impulsive evolution systems: Main results and new trends. Dynam. contin. Discrete impuls. Systems 3, 57-88 (1997) · Zbl 0879.34014
[6] Akhmetov, M. U.; Zafer, A.: Successive approximation method for quasilinear impulsive differential equations with control. Appl. math. Lett. 13, No. 5, 99-105 (2000) · Zbl 1125.93349
[7] Cabada, A.; Nieto, J. J.; Franco, D.; Trofimchuk, S. I.: A generalization of the monotone method for second order periodic boundary value problem with impulses at fixed points. Dynam. contin. Discrete impuls. Systems 7, 145-158 (2000) · Zbl 0953.34020
[8] Liu, X.; Shen, J.: Asymptotic behavior of solutions of impulsive neutral differential equations. Appl. math. Lett. 12, No. 7, 51-58 (1999) · Zbl 0943.34065
[9] Nieto, J. J.: Basic theory for nonresonance impulsive periodic problems of first order. J. math. Anal. appl. 205, 423-433 (1997) · Zbl 0870.34009
[10] Mawhin, J.: Topological degree methods in nonlinear boundary value problems. 40 (1979) · Zbl 0414.34025