zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analysis of instantaneous control for the Burgers equation. (English) Zbl 1022.49001
The authors study the distributed control of the one-dimensional Burgers equation by means of instantaneous controls for a tracking type functional. The process consists in choosing at time $t_k$ a control which minimizes a functional taking into account a tracking type problem involving the state and the target at time $t_{k+1}$. The authors prove that this procedure is equivalent to writing the controlled Burgers equation in a closed loop form. In the minimization procedure at time $t_k$ the choice of the step size for the gradient method is crucial in the analysis of the stability of the closed loop system. The authors establish different stability results for the corresponding closed loop systems and they illustrate their theoretical results by different numerical simulations.

49J20Optimal control problems with PDE (existence)
35Q53KdV-like (Korteweg-de Vries) equations
Full Text: DOI
[1] Abergel, F.; Temam, R.: On some control problems in fluid mechanics. Theoret. comput. Fluid dyn. 1, 303-325 (1990) · Zbl 0708.76106
[2] Berggren, M.: Numerical solution of a flow control problem: vorticity reduction by dynamic boundary action. SIAM J. Sci. comput. 19, No. 3, 829-860 (1998) · Zbl 0946.76016
[3] T.R. Bewley, P. Moin, R. Temam, DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. Preprint, 2000, J. Fluid Mech, to appear. · Zbl 1036.76027
[4] H. Choi, Suboptimal control of turbulent flow using control theory, Proceedings of the International Symposium on Mathematical Modelling of Turbulent Flows, 1995. Tokyo, Japan.
[5] H. Choi, M. Hinze, K. Kunisch, Instantaneous control of backward-facing-step flows, Applied Numer. Math., 31 (1999) 133--158. see also Preprint No. 571/1997, Fachbereich Mathematik, Technische Universität Berlin, Deutschland. · Zbl 0939.76027
[6] Choi, H.; Temam, R.; Moin, P.; Kim, J.: Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. fluid mech. 253, 509 (1993) · Zbl 0810.76012
[7] Dautray, R.; Lions, J. L.: Functional and variational methods. Mathematical analysis and numerical methods for science and technology 2 (1990) · Zbl 0784.73001
[8] García, C. E.; Prett, D. M.; Morari, M.: Model predictive control: theory and practice--a survey. Automatica 25, No. 3, 335-348 (1989) · Zbl 0685.93029
[9] M.D. Gunzburger, S. Manservisi, Analysis and approximation for linear feedback control for tracking the velocity in Navier--Stokes flows, Preprint, 1999, to appear. · Zbl 0938.35118
[10] Gunzburger, M. D.; Manservisi, S.: Analysis and approximation of the velocity tracking problem for Navier--Stokes flows with distributed control. SIAM J. Numer. anal. 37, 1481-1512 (2000) · Zbl 0963.35150
[11] D.C. Hill, Drag reduction strategies, CTR Annual Research Briefs, 1993. Center for Turbulence Research, Stanford University/NASA Ames Research Center, 3--14.
[12] M. Hinze, Optimal and instantaneous control of the instationary Navier--Stokes equations, Habilitationsschrift, 1999, Fachbereich Mathematik, Technische Universität Berlin.
[13] M. Hinze, A. Kauffmann, A new class of feedback control laws for dynamical systems, Preprint No. 602/1998, 1998, Fachbereich Mathematik, Technische Universität Berlin.
[14] Hinze, M.; Kunisch, K.: Control strategies for fluid flows--optimal versus suboptimal control. Enumath 97, 351-358 (1997) · Zbl 1068.76512
[15] Hou, L. S.; Yan, Y.: Dynamics for controlled Navier--Stokes systems with distributed controls. SIAM J. Control optim. 35, 654-677 (1997) · Zbl 0871.49008
[16] Kauffmann, A.; Kunisch, K.: Optimal control of a solid fuel ignition model. ESAIM: Proceedings 8, 65-76 (2000) · Zbl 0966.49022
[17] Lee, C.; Kim, J.; Choi, H.: Suboptimal control of turbulent channel flow for drag reduction. J. fluid mech. 358, 245-258 (1998) · Zbl 0907.76039
[18] Min, C.; Choi, H.: Suboptimal feedback control of vortex shedding at low Reynolds numbers. J. fluid mech. 401, 123-156 (1999) · Zbl 0968.76017
[19] V. Nevistić, J.A. Primbs, Finite receding horizon control: a general framework for stability and performance analysis, Preprint, 1997. Automatic Control Laboratory, ETH Zürich, Switzerland.
[20] Rawlings, J. B.; Muske, K. R.: The stability of constrained receding horizon control. IEEE trans. Automat. control 38, No. 10, 1512-1516 (1993) · Zbl 0790.93019
[21] Temam, R.: Navier--Stokes equations. (1979) · Zbl 0426.35003
[22] Tröltzsch, F.; Unger, A.: Fast solution of optimal control problems in selective cooling of steel. Zamm 81, 447-456 (2001) · Zbl 0993.49024
[23] Volkwein, S.: Augmented Lagrangian-SQP techniques and optimal control problems for the stationary Burgers equation. Computational optimization and applications 18, 133-158 (2001)
[24] Volkwein, S.: Distributed control problems for the Burgers equation. 1999. Computational optimization and applications 16, 57-81 (2001) · Zbl 0974.49020