Toth, John A.; Zelditch, Steve Riemannian manifolds with uniformly bounded eigenfunctions. (English) Zbl 1022.58013 Duke Math. J. 111, No. 1, 97-132 (2002). Let \(V_\lambda= \{\phi: \Delta\phi_\lambda= \lambda\phi_\lambda\}\) denote the \(\lambda\)-eigenspace for \(\lambda\) in the spectrum of the Laplacian on a compact Riemannian manifold \((M,g)\). Define \[ L^\infty(\lambda, g)= \sup_{\substack{ \phi\in V_\lambda\\ \|\phi\|_{L^2}= 1}} \|\phi\|_{L^\infty},\quad l^\infty(\lambda, g)= \inf_{\text{ONB}\{\phi_j\}\in V_\lambda} \Biggl(\sup_{j= 1,\dots,\dim V_\lambda}\|\phi_j\|_{L^\infty}\Biggr), \] where ONB denotes orthonormal basis. The aim of the article is to determine the \((M,g)\) for which \(l^\infty(\lambda, g)={\mathcal O}(1)\) and those for which \(L^\infty(\lambda, g)={\mathcal O}(1)\). It is found that for quantum completely integrable Laplacians under further suitable conditions the manifold \((M,g)\) is flat.Related questions for semiclassical Schrödinger operators \(\hbar^2\Delta+ V\) are analysed. Reviewer: Klaus Kirsten (Manchester) Cited in 1 ReviewCited in 21 Documents MSC: 58J50 Spectral problems; spectral geometry; scattering theory on manifolds 53D25 Geodesic flows in symplectic geometry and contact geometry Keywords:eigenfunctions; bounds; Laplacian; Schrödinger operators PDF BibTeX XML Cite \textit{J. A. Toth} and \textit{S. Zelditch}, Duke Math. J. 111, No. 1, 97--132 (2002; Zbl 1022.58013) Full Text: DOI arXiv References: [1] R. Abraham and J. E. Marsden, Foundations of Mechanics , 2d ed., Benjamin/Cummings, Reading, Mass., 1978. · Zbl 0393.70001 [2] V. I. Arnold, Modes and quasimodes (in Russian), Funktsional. Anal. i Priložen. 6 , no. 2 (1972), 12–20.; English translation in Funct. Anal. Appl. 6 (1972), 94–101. [3] M. V. Berry, Regular and irregular semiclassical wavefunctions , J. Phys. A 10 (1977), 2083–2091. · Zbl 0377.70014 [4] –. –. –. –., Semi-classical mechanics in phase space: A study of Wigner’s function , Philos. Trans. Roy. Soc. London Ser. A 287 (1977), 237–271. JSTOR: · Zbl 0421.70020 [5] M. Bialy and L. Polterovich, Hopf-type rigidity for Newton equations , Math. Res. Lett. 2 (1995), 695–700. · Zbl 0861.58012 [6] P. Bleher, D. Kosygin, and Ya. G. Sinaĭ, Distribution of energy levels of quantum free particle on the Liouville surface and trace formulae , Comm. Math. Phys. 179 (1995), 375–403. · Zbl 0842.58072 [7] D. Burago and S. Ivanov, Riemannian tori without conjugate points are flat , Geom. Funct. Anal. 4 (1994), 259–269. · Zbl 0808.53038 [8] A.-M. Charbonnel, Comportement semi-classique du spectre conjoint d’opérateurs pseudodifférentiels qui commutent , Asympt. Anal. 1 (1988), 227–261. · Zbl 0665.35080 [9] Y. Colin de Verdière, Quasi-modes sur les variétés riemanniennes , Invent. Math. 43 (1977), 15–52. · Zbl 0449.53040 [10] –. –. –. –., Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques , Comment. Math. Helv. 54 (1979), 508–522. · Zbl 0459.58014 [11] –. –. –. –., Spectre conjoint d’opérateurs pseudo-différentiels qui commutent, II: Le cas intégrable , Math. Z. 171 (1980), 51–73. · Zbl 0478.35073 [12] Y. Colin de Verdière and B. Parisse, Équilibre instable en régime semi-classique, I: Concentration microlocale , Comm. Partial Differential Equations 19 (1994), 1535–1563. · Zbl 0819.35116 [13] C. Croke and B. Kleiner, On tori without conjugate points , Invent. Math. 120 (1995), 241–257. · Zbl 0842.53028 [14] J. J. Duistermaat, On global action-angle coordinates , Comm. Pure Appl. Math. 33 (1980), 687–706. · Zbl 0439.58014 [15] A. Einstein, Zum Quantensatz von Sommerfeld und Epstein , Verh. Deutsch. Phys. Ges. 19 (1917), 82–92. [16] V. Guillemin and S. Sternberg, Geometric Asymptotics , Math. Surveys 14 , Amer. Math. Soc., Providence, 1977. · Zbl 0364.53011 [17] –. –. –. –., Homogeneous quantization and multiplicities of group representations , J. Funct. Anal. 47 (1982), 344–380. · Zbl 0733.58021 [18] G. J. Heckman, Quantum integrability for the Kovalevsky top , Indag. Math. (N.S.) 9 (1998), 359–365. · Zbl 0939.37037 [19] B. Helffer, Semi-classical Analysis for the Schrödinger Operator and Applications , Lecture Notes in Math. 1336 , Springer, Berlin, 1988. · Zbl 0647.35002 [20] L. Hörmander, The Analysis of Linear Partial Differential Operators, IV: Fourier Integral Operators , Grundlehren. Math. Wiss. 275 , Springer, Berlin, 1985. · Zbl 0612.35001 [21] D. Jakobson and S. Zelditch, “Classical limits of eigenfunctions for some completely integrable systems” in Emerging Applications of Number Theory (Minneapolis, 1996) , IMA Vol. Math. Appl. 109 , Springer, New York, 1999. · Zbl 1071.58505 [22] A. Knauf, Closed orbits and converse KAM theory , Nonlinearity 3 (1990), 961–973. · Zbl 0702.70013 [23] D. Kosygin, A. Minasov, and Ya. G. Sinaĭ, Statistical properties of the spectra of Laplace-Beltrami operators on Liouville surfaces (in Russian), Uspekhi Mat. Nauk 48 , no. 4 (1993), 3–130.; English translation in Russian Math. Surveys 48 , no. 4 (1993), 1–142. · Zbl 0838.58041 [24] F. Lalonde and J.-C. Sikorav, Sous-variétés lagrangiennes et lagrangiennes exactes des fibrés cotangents , Comment. Math. Helv. 66 (1991), 18–33. · Zbl 0759.53022 [25] E. Lerman, A convexity theorem for torus actions on contact manifolds , · Zbl 1021.53061 [26] ——–, Contact toric manifolds , · Zbl 1079.53118 [27] E. Lerman and N. Shirokova, Toric integrable geodesic flows , · Zbl 1001.37046 [28] R. Mañé, Ergodic Theory and Differentiable Dynamics , Ergeb. Math. Grenzgeb. (3) 8 , Springer, Berlin, 1987. [29] –. –. –. –., “On a theorem of Klingenberg” in Dynamical Systems and Bifurcation Theory (Rio de Janeiro, 1985) , Pitman Res. Notes Math. Ser. 160 , Longman Sci. Tech., Harlow, England, 1987, 319–345. · Zbl 0633.58022 [30] C. D. Sogge and S. Zelditch, Riemannian manifolds with maximal eigenfunction growth , to appear in Duke Math. J. · Zbl 1018.58010 [31] J. A. Toth, Various quantum mechanical aspects of quadratic forms , J. Funct. Anal. 130 (1995), 1–42. · Zbl 0841.58029 [32] –. –. –. –., Eigenfunction localization in the quantized rigid body , J. Differential Geom. 43 (1996), 844–858. · Zbl 0871.58050 [33] –. –. –. –., On the quantum expected values of integrable metric forms , J. Differential Geom. 52 (1999), 327–374. · Zbl 0992.53063 [34] J. A. Toth and S. Zelditch, (L^p )-estimates of eigenfunctions in the completely integrable case, preprint, 2000. · Zbl 1028.58028 [35] J. M. VanderKam, (L\sp \infty) norms and quantum ergodicity on the sphere , Internat. Math. Res. Notices 1997 , 329–347., ; Correction, Internat. Math. Res. Notices 1998 , 65. Mathematical Reviews (MathSciNet): · Zbl 0877.58056 [36] J. A. Wolf, Spaces of Constant Curvature , 5th ed., Publish or Perish, Houston, 1984. · Zbl 0556.53033 [37] J. A. Yorke, Periods of periodic solutions and the Lipschitz constant , Proc. Amer. Math. Soc. 22 (1969), 509–512. · Zbl 0184.12103 [38] S. Zelditch, Quantum transition amplitudes for ergodic and for completely integrable systems , J. Funct. Anal. 94 (1990), 415–436. · Zbl 0721.58051 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.